21,497 research outputs found

    On anomalous diffusion in a plasma in velocity space

    Get PDF
    The problem of anomalous diffusion in momentum space is considered for plasma-like systems on the basis of a new collision integral, which is appropriate for consideration of the probability transition function (PTF) with long tails in momentum space. The generalized Fokker-Planck equation for description of diffusion (in momentum space) of particles (ions, grains etc.) in a stochastic system of light particles (electrons, or electrons and ions, respectively) is applied to the evolution of the momentum particle distribution in a plasma. In a plasma the developed approach is also applicable to the diffusion of particles with an arbitrary mass relation, due to the small characteristic momentum transfer. The cases of an exponentially decreasing in momentum space (including the Boltzmann-like) kernel in the PT-function, as well as the more general kernels, which create the anomalous diffusion in velocity space due to the long tail in the PT-function, are considered. Effective friction and diffusion coefficients for plasma-like systems are found.Comment: 18 pages, no figure

    Consistent Group and Coset Reductions of the Bosonic String

    Full text link
    Dimensional reductions of pure Einstein gravity on cosets other than tori are inconsistent. The inclusion of specific additional scalar and p-form matter can change the situation. For example, a D-dimensional Einstein-Maxwell-dilaton system, with a specific dilaton coupling, is known to admit a consistent reduction on S^2= SU(2)/U(1), of a sort first envisaged by Pauli. We provide a new understanding, by showing how an S^3=SU(2) group-manifold reduction of (D+1)-dimensional Einstein gravity, of a type first indicated by DeWitt, can be broken into in two steps; a Kaluza-type reduction on U(1) followed by a Pauli-type coset reduction on S^2. More generally, we show that any D-dimensional theory that itself arises as a Kaluza U(1) reduction from (D+1) dimensions admits a consistent Pauli reduction on any coset of the form G/U(1). Extensions to the case G/H are given. Pauli coset reductions of the bosonic string on G= (G\times G)/G are believed to be consistent, and a consistency proof exists for S^3=SO(4)/SO(3). We examine these reductions, and arguments for consistency, in detail. The structures of the theories obtained instead by DeWitt-type group-manifold reductions of the bosonic string are also studied, allowing us to make contact with previous such work in which only singlet scalars are retained. Consistent truncations with two singlet scalars are possible. Intriguingly, despite the fact that these are not supersymmetric models, if the group manifold has dimension 3 or 25 they admit a superpotential formulation, and hence first-order equations yielding domain-wall solutions.Comment: Latex, 5 figures, 45 pages, minor correction

    Multidimensional Cosmology: Spatially Homogeneous models of dimension 4+1

    Full text link
    In this paper we classify all 4+1 cosmological models where the spatial hypersurfaces are connected and simply connected homogeneous Riemannian manifolds. These models come in two categories, multiply transitive and simply transitive models. There are in all five different multiply transitive models which cannot be considered as a special case of a simply transitive model. The classification of simply transitive models, relies heavily upon the classification of the four dimensional (real) Lie algebras. For the orthogonal case, we derive all the equations of motion and give some examples of exact solutions. Also the problem of how these models can be compactified in context with the Kaluza-Klein mechanism, is addressed.Comment: 24 pages, no figures; Refs added, typos corrected. To appear in CQ

    Geometrical features of (4+d) gravity

    Get PDF
    We obtain the vacuum spherical symmetric solutions for the gravitational sector of a (4+d)-dimensional Kaluza-Klein theory. In the various regions of parameter space, the solutions can describe either naked singularities or black-holes or wormholes. We also derive, by performing a conformal rescaling, the corresponding picture in the four-dimensional space-time.Comment: 10 pages, LateX2e, to appear in Phys.Rev.

    Variable rest masses in 5-dimensional gravitation confronted with experimental data

    Full text link
    Cosmological solutions of Einstein equation for a \mbox{5-dimensional} space-time, in the case of a dust-filled universe, are presented. With these solutions we are able to test a hypothetical relation between the rest mass of a particle and the 5th5^{\rm th} dimension. Comparison with experiment strongly refutes the implied dependence of the rest mass on the cosmological time.Comment: Some references adde

    Electronic Raman scattering in YBCO and other superconducting cuprates

    Full text link
    Superconductivity induced structures in the electronic Raman spectra of high-Tc superconductors are computed using the results of ab initio LDA-LMTO three-dimensional band structure calculations via numerical integrations of the mass fluctuations, either in the whole 3D Brillouin zone or limiting the integrations to the Fermi surface. The results of both calculations are rather similar, the Brillouin zone integration yielding additional weak structures related to the extended van Hove singularities. Similar calculations have been performed for the normal state of these high-Tc cuprates. Polarization configurations have been investigated and the results have been compared to experimental spectra. The assumption of a simple d_(x^2-y^2)-like gap function allows us to explain a number of experimental features but is hard to reconcile with the relative positions of the A1g and B1g peaks.Comment: 14 pages, LaTeX (RevTeX), 5 PostScript figures, uses multicol.sty, submitted to PR

    A Solution to the Hierarchy Problem with an Infinitely Large Extra Dimension and Moduli Stabilization

    Get PDF
    We construct a class of solutions to the Einstein's equations for dimensions greater than or equal to six. These solutions are characterized by a non-trivial warp factor and possess a non-compact extra dimension. We study in detail a simple model in six dimensions containing two four branes. One of each brane's four spatial directions is compactified. The hierarchy problem is resolved by the enormous difference between the warp factors at the positions of the two branes, with the standard model fields living on the brane with small warp factor. Both branes can have positive tensions. Their positions, and the size of the compact dimension are determined in terms of the fundamental parameters of the theory by a combination of two independent and comparable effects---an anisotropic contribution to the stress tensor of each brane from quantum fields living on it and a contribution to the stress tensor from a bulk scalar field. One overall fine tuning of the parameters of the theory is required ---that for the cosmological constant.Comment: 16 pages 1 figure. Conclusion about naturalness of hierarchy without bulk interactions changed. Section added on obtaining a natural hierarchy with bulk scalar field. References added. Minor editin

    Phonon and Elastic Instabilities in MoC and MoN

    Full text link
    We present several results related to the instability of MoC and MoN in the B1 (sodium chloride) structure. These compounds were proposed as potential superconductors with moderately high transition temperatures. We show that the elastic instability in B1-structure MoN, demonstrated several years ago, persists at elevated pressures, thus offering little hope of stabilizing this material without chemical doping. For MoC, another material for which stoichiometric fabrication in the B1-structure has not proven possible, we find that all of the cubic elastic constants are positive, indicating elastic stability. Instead, we find X-point phonon instabilities in MoC (and in MoN as well), further illustrating the rich behavior of carbo-nitride materials. We also present additional electronic structure results for several transition metal (Zr, Nb and Mo) carbo-nitride systems and discuss systematic trends in the properties of these materials. Deviations from strict electron counting dependencies are apparent.Comment: 5 pages and 4 trailing figures. Submitted to PR
    corecore