141 research outputs found

    Towards ultra-high resolution 3D reconstruction of a whole rat brain from 3D-PLI data

    Full text link
    3D reconstruction of the fiber connectivity of the rat brain at microscopic scale enables gaining detailed insight about the complex structural organization of the brain. We introduce a new method for registration and 3D reconstruction of high- and ultra-high resolution (64 μ\mum and 1.3 μ\mum pixel size) histological images of a Wistar rat brain acquired by 3D polarized light imaging (3D-PLI). Our method exploits multi-scale and multi-modal 3D-PLI data up to cellular resolution. We propose a new feature transform-based similarity measure and a weighted regularization scheme for accurate and robust non-rigid registration. To transform the 1.3 μ\mum ultra-high resolution data to the reference blockface images a feature-based registration method followed by a non-rigid registration is proposed. Our approach has been successfully applied to 278 histological sections of a rat brain and the performance has been quantitatively evaluated using manually placed landmarks by an expert.Comment: 9 pages, Accepted at 2nd International Workshop on Connectomics in NeuroImaging (CNI), MICCAI'201

    Interaction-induced effects in the nonlinear coherent response of quantum-well excitons

    Get PDF
    Interaction-induced processes are studied using the third-order nonlinear polarization created in polarization-dependent four-wave-mixing experiments (FWM) on a ZnSe single quantum well. We discuss their influence by a comparison of the experimental FWM with calculations based on extended optical Bloch equations including local-field effects, excitation-induced dephasing, and biexciton formation. The investigations show that, for copolarized input fields, excitation-induced dephasing is the dominant FWM mechanism, followed by the conventional density-grating FWM process, biexcitonic contributions, and local-field effects. For cross-linear polarized input fields the excitation-induced dephasing mechanism is canceled so that the conventional density-grating FWM process and biexcitonic contributions are dominating

    Mixed biexcitons in single quantum wells

    Get PDF
    Biexcitonic complexes in a ZnSe single quantum well are investigated by spectrally resolved four-wave mixing (FWM). The formation of heavy-heavy-hole XXh and of mixed heavy-light-hole XXm biexcitons showing binding energies of Δh=4.8meV and Δm=2.8meV is identified by polarization selection rules. The coherent dynamics of the FWM response and the observed FWM intensity ratio between the XXh and XXm biexciton-induced nonlinear signals are in agreement with the solution of an extended optical Bloch equation

    Improving the Performance of a Low-rate Image Coder Connected to a Noisy Gaussian Channel.

    No full text
    The problem of communicating the output of a vector quantizer image coder over Gaussian channel is investigated. A fixed bandwidth is assumed to be available and the energy per modulator symbol is fixed. The reference system is a QPSK modulator with a gray code mapping between bits and modulator symbols. The techniques investigated include Hamming coding, convolutional coding, 8-PSK trellis-coded modulation, and methods based on simulated annealing coupled with quantizer optimization

    Innovationsblockaden und Innovationschancen integrierter Versorgungsformen: Deutschland und die Schweiz im Vergleich

    No full text
    corecore