21 research outputs found

    Scaling laws for light weight optics, studies of light weight mirrors mounting and dynamic mirror stress, and light weight mirror and mount designs

    Get PDF
    Scaling laws for light-weight optical systems are examined. A cubic relationship between mirror diameter and weight has been suggested and used by many designers of optical systems as the best description for all light-weight mirrors. A survey of existing light-weight systems in the open literature was made to clarify this issue. Fifty existing optical systems were surveyed with all varieties of light-weight mirrors including glass and beryllium structured mirrors, contoured mirrors, and very thin solid mirrors. These mirrors were then categorized and weight to diameter ratio was plotted to find a best curve for each case. A best fitting curve program tests nineteen different equations and ranks a goodness-to-fit for each of these equations. The resulting relationship found for each light-weight mirror category helps to quantify light-weight optical systems and methods of fabrication and provides comparisons between mirror types

    Optimal Support Structures for Chopping Mirrors

    Get PDF

    Dynamic analysis and design of the SIRTF primary mirror mount

    Get PDF
    The criteria and considerations for the design of the support system for the Space Infrared Telescope Facility (SIRTF) primary mirror are presented. A flexural-gimbal-baseplate design for the 0.5 m primary mirror was developed. Preliminary studies have indicated that this design may be further improved by replacing the flexures by a post-gimbal system wherein the gimbal design accomodates both the cryogenic cool down effects, the dynamic launch loads, and manufacturing tolerance effects. Additionally, a prestressed baseplate concept had evolved and was presented for the full scale 1.0 m mirror. However, preliminary design studies indicate that this concept will not be required, and the post-gimbal-baseplate design similar to the 0.5 m alternate support system will meet the cryogenic cool down, dynamic launch load criteria, and manufacturing tolerance effects

    Efficient Biped Pattern Generation Based on Passive Inverted Pendulum Model

    No full text
    corecore