336 research outputs found

    Implementing MAS agreement processes based on consensus networks

    Full text link
    [EN] Consensus is a negotiation process where agents need to agree upon certain quantities of interest. The theoretical framework for solving consensus problems in dynamic networks of agents was formally introduced by Olfati-Saber and Murray, and is based on algebraic graph theory, matrix theory and control theory. Consensus problems are usually simulated using mathematical frameworks. However, implementation using multi-agent system platforms is a very difficult task due to problems such as synchronization, distributed finalization, and monitorization among others. The aim of this paper is to propose a protocol for the consensus agreement process in MAS in order to check the correctness of the algorithm and validate the protocol. © Springer International Publishing Switzerland 2013.This work is supported by ww and PROMETEO/2008/051 projects of the Spanish government, CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, TIN2012-36586-C03-01 and PAID-06-11-2084.Palomares Chust, A.; Carrascosa Casamayor, C.; Rebollo Pedruelo, M.; Gómez, Y. (2013). Implementing MAS agreement processes based on consensus networks. Distributed Computing and Artificial Intelligence. 217:553-560. https://doi.org/10.1007/978-3-319-00551-5_66S553560217Argente, E.: et al: An Abstract Architecture for Virtual Organizations: The THOMAS approach. Knowledge and Information Systems 29(2), 379–403 (2011)Búrdalo, L.: et al: TRAMMAS: A tracing model for multiagent systems. Eng. Appl. Artif. Intel. 24(7), 1110–1119 (2011)Fogués, R.L., et al.: Towards Dynamic Agent Interaction Support in Open Multiagent Systems. In: Proc. of the 13th CCIA, vol. 220, pp. 89–98. IOS Press (2010)Luck, M., et al.: Agent technology: Computing as interaction (a roadmap for agent based computing). Eng. Appl. Artif. Intel. (2005)Mailler, R., Lesser, V.: Solving distributed constraint optimization problems using cooperative mediation. In: AAMAS 2004, pp. 438–445 (2004)Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE 95(1), 215–233 (2007)Pujol-Gonzalez, M.: Multi-agent coordination: Dcops and beyond. In: Proc. of IJCAI, pp. 2838–2839 (2011)Such, J.: et al: Magentix2: A privacy-enhancing agent platform. Eng. Appl. Artif. Intel. 26(1), 96–109 (2013)Vinyals, M., et al.: Constructing a unifying theory of dynamic programming dcop algorithms via the generalized distributive law. Autonomous Agents and Multi-Agent Systems 22, 439–464 (2011

    Controlling Risk of Web Question Answering

    Full text link
    Web question answering (QA) has become an indispensable component in modern search systems, which can significantly improve users' search experience by providing a direct answer to users' information need. This could be achieved by applying machine reading comprehension (MRC) models over the retrieved passages to extract answers with respect to the search query. With the development of deep learning techniques, state-of-the-art MRC performances have been achieved by recent deep methods. However, existing studies on MRC seldom address the predictive uncertainty issue, i.e., how likely the prediction of an MRC model is wrong, leading to uncontrollable risks in real-world Web QA applications. In this work, we first conduct an in-depth investigation over the risk of Web QA. We then introduce a novel risk control framework, which consists of a qualify model for uncertainty estimation using the probe idea, and a decision model for selectively output. For evaluation, we introduce risk-related metrics, rather than the traditional EM and F1 in MRC, for the evaluation of risk-aware Web QA. The empirical results over both the real-world Web QA dataset and the academic MRC benchmark collection demonstrate the effectiveness of our approach.Comment: 42nd International ACM SIGIR Conference on Research and Development in Information Retrieva

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    Guest Editorial: Non-Euclidean Machine Learning

    Get PDF
    Over the past decade, deep learning has had a revolutionary impact on a broad range of fields such as computer vision and image processing, computational photography, medical imaging and speech and language analysis and synthesis etc. Deep learning technologies are estimated to have added billions in business value, created new markets, and transformed entire industrial segments. Most of today’s successful deep learning methods such as Convolutional Neural Networks (CNNs) rely on classical signal processing models that limit their applicability to data with underlying Euclidean grid-like structure, e.g., images or acoustic signals. Yet, many applications deal with non-Euclidean (graph- or manifold-structured) data. For example, in social network analysis the users and their attributes are generally modeled as signals on the vertices of graphs. In biology protein-to-protein interactions are modeled as graphs. In computer vision & graphics 3D objects are modeled as meshes or point clouds. Furthermore, a graph representation is a very natural way to describe interactions between objects or signals. The classical deep learning paradigm on Euclidean domains falls short in providing appropriate tools for such kind of data. Until recently, the lack of deep learning models capable of correctly dealing with non-Euclidean data has been a major obstacle in these fields. This special section addresses the need to bring together leading efforts in non-Euclidean deep learning across all communities. From the papers that the special received twelve were selected for publication. The selected papers can naturally fall in three distinct categories: (a) methodologies that advance machine learning on data that are represented as graphs, (b) methodologies that advance machine learning on manifold-valued data, and (c) applications of machine learning methodologies on non-Euclidean spaces in computer vision and medical imaging. We briefly review the accepted papers in each of the groups
    • …
    corecore