27 research outputs found

    Phase I and pharmacokinetic study of the novel chemoprotector BNP7787 in combination with cisplatin and attempt to eliminate the hydration schedule

    Get PDF
    BNP7787 (disodium 2,2′-dithio-bis-ethane sulphonate; Tavocept™) is a novel agent developed to protect against cisplatin (cis-diammine-dichloroplatinum(II))-associated chronic toxicities. In this study, we determined the recommended dose of BNP7787 when preceding a fixed dose of cisplatin, the pharmacokinetics (PKs) and the possible reduction of saline hydration. Patients with advanced solid tumours received BNP7787 in escalating doses of 4.1–41 g m−2 as a 15-min intravenous (i.v.) infusion followed by cisplatin 75 mg m−2 as a 60-min i.v. infusion together with pre- and postcisplatin saline hydration in a volume of 2200 ml; cycles were repeated every 3 weeks. PK was carried out using BNP7787, cisplatin and the combination. Twenty-five patients were enrolled in stage I of the study to determine the recommended dose of BNP7787. No dose-limiting toxicity was reached. The highest dose level of 41 g m−2 resulted in a low incidence of grade 2 toxicities, being nausea and vomiting, dry mouth or bad taste and i.v. injection site discomfort. Doses of BNP7787 ⩾18.4 g m−2 did not show a drug interaction between BNP7787 and cisplatin. In stage II of the study, patients received a fixed dose of BNP7787 of 18.4 g m−2 preceding cisplatin and were entered in prespecified reduced saline hydration steps. A total of 21 patients in cohorts of six to nine patients received reduced saline hydration of 1600 ml (step A), 1000 ml (step B) and 500 ml (step C). In step C, two out of six evaluable patients experienced grade 1 nephrotoxicity. Cisplatin acute toxicities in all 46 patients were as expected. Only five patients complained of paresthesias grade 1 and six developed slight audiometric changes. Partial tumour response was observed in four patients and stable disease in 15 patients. In conclusion, BNP7787 was tolerated well up to doses of 41 g m−2. The recommended dose of 18.4 g m−2 enabled safe reduction of the saline hydration schedule for cisplatin to 1000 ml. Further studies will assess whether BNP7787 offers protection against platinum-related late side effects

    Pharmacokinetic behaviour of the chemoprotectants BNP7787 and mesna after an i.v. bolus injection in rats

    Get PDF
    0.01). In conclusion, the five-fold higher AUC of mesna in plasma after mesna administration and the fact that mesna is more reactive with (hydrated) cisplatin than its disulphide form BNP7787 represent a plausible explanation as to why mesna administration can reduce the antitumour activity of cisplatin. After BNP7787 administration, the distribution of BNP7787 and mesna was restricted to the kidney, which confirmed the selective protection of the kidney by BNP7787

    Chemical profiling of chemical warfare agents for forensic purposes

    No full text
    A program has been initiated towards the chemical profiling of chemical warfare agents, in order to support forensic investigations towards synthesis routes, production sites and suspect chemical suppliers. Within the first stage of the project various chemical warfare agents (VX, sulfur mustard, sarin) have been prepared according to well-known or more obscure quick-and-dirty synthesis protocols. After minimal work-up, the crude products were analyzed with GC-MS, affording highly useful mass spectral data sets of byproducts. The intact agents were present at moderate to high levels in most crude products. In several cases it was possible to correlate the applied synthesis route to the formation of unique byproducts, or to a characteristic ratio of byproducts. It was also assessed that for the majority of the crude products the chemical profile remained more or less intact upon prolonged storage. This was remarkable because it was expected that the crude products would decompose rather quickly because of the presence of traces of acid. In the current presentation, the focus will lie on the results obtained for VX. Inter alia, the stability of the chemical profile was assessed for the crude VX batches in/on several matrices (soil, water, wood, textile and rubber). Dependent on the matrix, VX could be detected up to several weeks after liquid extraction or thermodesorption followed by GC-MS analysis, while for some of the crude products the characteristic byproducts could still be detected

    Possible (enzymatic) routes and biological sites for metabolic reduction of BNP7787, a new protector against cisplatin-induced side-effects.

    No full text
    Disodium 2,2'-dithio-bis-ethane sulfonate (BNP7787) is under investigation as a potential new chemoprotector against cisplatin-induced nephrotoxicity. The selective protection of BNP7787 appears to arise from the preferential uptake of the drug in the kidneys, where BNP7787 would undergo intracellular conversion into mesna (2-mercapto ethane sulfonate), which in turn can prevent cisplatin induced toxicities. In the present study, we have investigated whether the reduction of BNP7787 into the reactive compound mesna is restricted to the kidney or whether it can also occur in other organs, cells and physiological compartments, including the cytosolic fraction of the renal cortex, plasma, red blood cells (RBCs), liver and small intestine from rats and several tumors (OVCAR-3, MRI-H-207 and WARD). We also determined whether the endogenous thiols glutathione (GSH) and cysteine and the enzyme systems glutaredoxin and thioredoxin, which are all present in the kidney, can be involved in the BNP7787 reduction. UV detection and micro-HPLC with dual electrochemical detection were used to analyze the various incubation mixtures. Our observations are that, in contrast to plasma, a very large reductive conversion of BNP7787 to mesna was measured in RBC lysate. Intact RBCs, however, did not take up BNP7787. Although BNP7787 could be reduced in cytosol of liver and several tumors, this reduction will not be relevant in vivo, since these tissues do not take up large amounts of BNP7787. Kidney cortex cytosol was, similar to the small intestine cytosol, able to substantially reduce BNP7787 to mesna. The ability to reduce BNP7787 in the presence of the endogenous thiols GSH and cysteine, the glutaredoxin system as well as the thioredoxin system, could at least in part explain the high BNP7787 reductive activity of the kidney cortex cytosol. In conclusion, the high reduction of BNP7787 into mesna in the kidney as well as our earlier observation that the distribution of BNP7787 and mesna was mainly restricted to rat kidney are strong arguments in favor of selective protection of the kidney by BNP7787
    corecore