413 research outputs found

    An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Get PDF
    Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''). Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular

    Volatile‐mediated interactions with surface‐associated microbes: A parallelism between phyllosphere of plants and eco‐chemosphere of seaweeds

    Get PDF
    1. Both in terrestrial and aquatic realms, organisms communicate and interact with each other via volatile and non-volatile infochemicals. Terrestrial plants and seaweeds, known as prolific producers of volatiles, harbour a plethora of microbes on their surfaces like phyllosphere of plant leaves and eco-chemosphere of seaweeds, respectively, where complex ecological interactions are regulated through infochemicals. 2. Although plant leaf volatiles have been well-studied for their ecological functions in mediating microbial interactions, seaweed volatiles have been mostly investigated for their roles in climate regulation and with regard to climate change research. However, seaweed volatiles appear to be related to terrestrial plant volatiles both in terms of chemistry and ecology. 3. Synthesis. Evidence supports that seaweed volatiles can have important ecological functions in mediating interactions with microbes on their surface, just like plant leaf volatiles. Based on the existing vast literature on ecological interactions mediated by plant volatiles at phyllosphere and on the very few works on ecological roles of seaweed volatiles at eco-chemosphere, we advocate for the detailed investigation of volatile-mediated interactions regulating microbial colonisation processes on seaweed surfaces. Although of great ecological importance, this new field of research has remained largely unexplored. Thus, we also set directions for future research programs investigating the roles of seaweed volatiles at seaweed–microbe interface

    Glucocorticoid receptor expression in human bronchial epithelial cells: effects of smoking and COPD.

    Get PDF
    Previously, we found that inflammatory mediators modulated the number and binding affinity of glucocorticoid receptors (GR) in human bronchial epithelial cell lines. In this study we investigated whether smoking and chronic obstructive pulmonary disease (COPD), both characterized by airway inflammation with increased levels of inflammatory mediators, affect GR characteristics in cultured human bronchial epithelial cells (HBEC). A statistically significant difference was found between the dissociation constant (Kd) values in HBEC from smoking (Kd = 0.98+/-0.08 nM; n = 6) and nonsmoking controls (Kd = 0.76+/-0.10 nM, P = 0.03; n = 5), but no significant difference was found between the mean number of binding sites. Our results are the first indication that cultured HBEC from smokers possess GR with a lower binding affinity. This may result from the inflammation found in the airways from smokers. Furthermore, these results provide further evidence that the bronchial epithelium may be an actual target for inhaled glucocorticoid therapy

    An evolutionary intra-molecular shift in the preferred U3 snoRNA binding site on pre-ribosomal RNA

    Get PDF
    Correct docking of U3 small nucleolar RNA (snoRNA) on pre-ribosomal RNA (pre-rRNA) is essential for rRNA processing to produce 18S rRNA. In this report, we have used Xenopus oocytes to characterize the structural requirements of the U3 snoRNA 3′-hinge interaction with region E1 of the external transcribed spacer (ETS) of pre-rRNA. This interaction is crucial for docking to initiate rRNA processing. 18S rRNA production was inhibited when fewer than 6 of the 8 bp of the U3 3′–hinge complex with the ETS could form; moreover, base pairing involving the right side of the 3′-hinge was more important than the left. Increasing the length of the U3 hinge–ETS interaction by 9 bp impaired rRNA processing. Formation of 18S rRNA was also inhibited by swapping the U3 5′- and 3′-hinge interactions with the ETS or by shifting the base pairing of the U3 3′-hinge to the sequence directly adjacent to ETS region E1. However, 18S rRNA production was partially restored by a compensatory shift that allowed the sequence adjacent to the U3 3′-hinge to pair with the eight bases directly adjacent to ETS region E1. The results suggest that the geometry of the U3 snoRNA interaction with the ETS is critical for rRNA processing

    Expression of lipocortins in human bronchial epithelial cells: effects of IL-1β , TNF-α, LPS and dexamethasone

    Get PDF
    In this study, we investigated the expression of lipocortin I and II (annexin I and I in the human bronchial epithelium, both in vivo and in vitro. A clear expression of lipocortin I and II protein was found in the epithelium in sections of bronchial tissue. In cultured human bronchial epithelial cells we demonstrated the expression of lipocortin I and II mRNA and protein using Northern blotting, FACScan analysis and ELISA. No induction of lipocortin I or II mRNA or protein was observed after incubation with dexamethasone. Stimulation of bronchial epithelial cells with IL-1β, TNF-α or LPS for 24 h did not affect the lipocortin I or II mRNA or protein expression, although PGE2 and 6-keto-PGF1α production was significantly increased. This IL-1β- and LPS-mediated increase in eicosanoids could be reduced by dexamethasone, but was not accompanied by an increase in lipocortin I or II expression. In human bronchial epithelial cells this particular glucocorticoid action is not mediated through lipocortin I or II induction
    corecore