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Abstract. Classical nucleation theory is unable to explain
the ubiquity of nucleation events observed in the atmosphere.
This shows a need for an empirical determination of the nu-
cleation rate. Here we present a novel inverse modeling
procedure to determine particle nucleation and growth rates
based on consecutive measurements of the aerosol size dis-
tribution. The particle growth rate is determined by regres-
sion analysis of the measured change in the aerosol size dis-
tribution over time, taking into account the effects of pro-
cesses such as coagulation, deposition and/or dilution. This
allows the growth rate to be determined with a higher time-
resolution than can be deduced from inspecting contour plots
(“banana-plots”). Knowing the growth rate as a function of
time enables the evaluation of the time of nucleation of mea-
sured particles of a certain size. The nucleation rate is then
obtained by integrating the particle losses from time of mea-
surement to time of nucleation. The regression analysis can
also be used to determine or verify the optimum value of
other parameters of interest, such as the wall loss or coag-
ulation rate constants. As an example, the method is applied
to smog chamber measurements. This program offers a pow-
erful interpretive tool to study empirical aerosol population
dynamics in general, and nucleation and growth in particu-
lar.

1 Introduction

From the many observations of new particle formation at dif-
ferent locations over the globe, it is now recognized that par-
ticle nucleation occurs widely in the troposphere (Kulmala et
al., 2004). Small particles have adverse health effects (Ober-
dorster, 2001). When these particles grow to larger sizes they
can directly affect climate by contributing to light scattering
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and absorption (Schwartz, 1996) and can indirectly affect
climate by acting as cloud condensation nuclei and, there-
fore, altering cloud radiative properties and cloud lifetime
(Lohmann and Feichter, 2005).

Nucleation can occur in almost any environment, subject
to a favourable set of conditions. These conditions include
a strong source of condensable vapour, high UV radiation
intensity, low aerosol surface area, high relative humidity,
low temperature, and atmospheric mixing processes. It is
noteworthy that of these locations, only nucleation in the free
troposphere and in the vicinity of clouds seems to agree with
predictions based on classical nucleation theory (Clarke et
al., 1999).

It has been suggested that the diameter of the critical clus-
ter, the smallest particle size for which the rate of condensa-
tion is larger than the rate of evaporation, is thought to be
on the order of 1 nm (Weber et al., 1997; Kulmala et al.,
2000). This cluster of a few molecules can hardly be de-
scribed as being in the liquid phase, nor is it a gas. Even the
use of the term “diameter” for this agglomerate of molecules
is questionable (Preining, 1998). The classical nucleation
theory, however, uses bulk liquid properties to describe the
critical cluster and calculate the nucleation rate. Not surpris-
ingly, there are large discrepancies between measurements
(both laboratory and atmospheric) and classical nucleation
theory; the discrepancy often amounts to several orders of
magnitude (Wyslouzil et al., 1991; Weber et al., 1995, 1997,
1998; Andronache et al., 1997). Different parameterizations
of nucleation rates give orders of magnitude different results
(Kulmala and Laaksonen, 1990). Good agreement of theo-
retical nucleation rates with laboratory experiments has been
presented (Viisanen et al., 1997), but the sulfuric acid con-
centrations used were much higher than is typical for the at-
mosphere. Since the nucleation rate is extremely sensitive to
the sulfuric acid concentration (Easter and Peters, 1994), ex-
trapolation to atmospheric values is highly uncertain. These
discrepancies illustrate a need to empirically determine the
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nucleation rate from measurements, independent of theory.
In a spatially and temporally homogeneous situation the

average growth rate can be deduced from the time delay
between the increase in precursor concentration and ultra-
fine particle number (Weber et al., 1997). If the location of
the precursor source is known and constant in time, the in-
ferred transport time to the measurement site can be used
to infer the growth rate (Weber et al., 1998; O’Dowd et
al., 1999), although dilution and coagulation would have in-
fluenced the size distribution during the time between nu-
cleation and measurement. These ways of determining the
growth rate are limited by the special conditions they require,
and they provide an estimate of the growth rate averaged over
relatively long time scales.

Usually the growth rate is estimated from the evolution of
the maximum particle number in the size distributions under
homogeneous conditions by fitting the trajectory of highest
particle concentration in a contour-plot of diameter versus
time (Mäkel̈a et al., 1997; Kulmala et al., 1998b, 2001). By
doing this, only the maximum in the particle size distribu-
tion is used, and, as is the case for the methods discussed
above, the estimated growth rate is averaged over relatively
long time scales, thereby masking variations in the growth
rate.

McMurry and Wilson (1982) determined the growth rate
by solving the growth term in the cumulative form of the
General Dynamic Equation (see Sect. 2.1). This same prin-
ciple was used by Verheggen and Mozurkewich (2002), who
first corrected the measured size distributions for coagulation
and dilution before determining the growth rate by linear in-
terpolation in a plot of consecutive cumulative size distribu-
tions.

Since the current commercially available measurement
techniques can only detect particles larger than 3 nm diam-
eter, the nucleation rate is not directly measurable. Instead,
many studies have reported the appearance rate of particles
above a certain threshold diameter, dictated by the mini-
mum detectable size of the instrumentation used (Weber et
al., 1995; O’Dowd et al., 1998). Often, the appearance rate
is deduced from the increase in total particle concentration
larger than 3 nm diameter (O’Dowd et al., 1998). Attempts
have been made to relate this appearance rate to the actual
nucleation rate by estimating the amount of particle losses
since the time of nucleation due to coagulation and deposi-
tion (O’Dowd et al., 1999; Kulmala et al., 2001).

In this paper a novel method is described to accurately de-
termine the empirical particle nucleation and growth rates.
The particle growth rate is determined via a non-linear re-
gression analysis of the General Dynamic Equation (GDE)
(Friedlander, 2000) to fit the measured change of the aerosol
size distribution in time. This way, the growth rate is de-
termined using a range of size intervals rather than a to-
tal number or only the maximum of the distribution, as is
implicitly done when fitting the evolution of the maximum
number density in a contour-plot of consecutive size distribu-

tions. Knowing the growth rate as a function of time enables
an estimate of the time of formation of measured particles.
By integrating the losses that have occurred between time of
formation and time of measurement, the number density of
nucleated particles can be determined. Knowing the concen-
tration of nucleated particles and the time interval in which
they formed gives the nucleation rate. This is different from
other methods that are based on fitting the nucleation rate us-
ing an aerosol dynamics model (Lehtinen et al., 2004; Sandu
et al., 2005) or on correcting the appearance rate for coagu-
lation (O’Dowd et al., 1999; Kulmala et al., 2001; Kerminen
and Kulmala, 2002).

The program, called PARGAN (particle growth and nu-
cleation), is written using IGOR Pro software (Wavemeterics
Inc.) and will be described in detail below. Its application
to measurements made in the Calspan environmental cham-
ber will be discussed. This method can serve as a powerful
tool to improve our understanding of nucleation by provid-
ing data on nucleation in the atmosphere that do not depend
on classical nucleation theory. These data could in turn be
used to develop empirically based parameterizations to the
nucleation rate, for use in simulation modeling.

2 Theory

2.1 General Dynamic Equation

The General Dynamic Equation (GDE) describes the evo-
lution of the aerosol size distribution in time. The rate of
change in cumulative particle concentration, defined as the
concentration of particles larger than a certain size, is used
as the quantity being fit. This greatly simplifies the growth
term, and it tends to dampen the effect of noise in the data.
The cumulative form of the GDE is given by

∂Nc(rc)

∂t
=

r∞∫
rc

(
∂n(r)

∂t

)
dr = −

r∞∫
rc

(kL(r)n(r))dr + g(rc)n(rc)+

r∞∫
rc

 rc∫
r0

(
kC(r1, r2)n(r1)n(r2)

(
r

r2

)2
)

dr1

dr−

2

r∞∫
rc

n(r)

r∞∫
r0

(kC(r, r1)n(r1)) dr1

dr (1)

wherer0 andr∞ are the minimum and maximum detectable
radii, respectively. The size distribution function is given
by n(r)=dN(r)/dr, whereN(r) is the number of particles
of radius r per unit volume;Nc(rc) denotes the cumula-
tive number concentration of particles larger thanrc. Equa-
tion (1) is obtained by integrating the regular form of the
GDE. For clarity of presentation, the time indexes have been
omitted here, though it should be kept in mind that the size
distribution function,n, and the particle radius growth rate,
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g, are a function of both radius,r, and time,t . The first
term on the right hand side of Eq. (1) describes the effect of
first order losses (e.g. deposition and dilution), wherekL(r)

is the size dependent first order rate constant. The second
term describes the effect of growth by condensation of low
vapour pressure species. The third and fourth terms describe
the effect of particles being produced by coagulation of two
smaller particles (of radiir1 andr2, where (r1)

3
+(r2)

3
=r3)

and particles being lost by coagulation with another particle
(of radiusr1), respectively. The second order rate constant
for coagulation of particles of radiusr1 with those of radius
r2 is given bykC(r1, r2). These processes will be discussed
in more detail below.

Direct emissions also influence the ambient size distribu-
tion, which could be represented by a zero order source term
in the GDE, as it is usually independent ofn(r). This has
been omitted from Eq. (1). Nucleation is not explicitly in-
cluded in Eq. (1), since with the currently available instru-
mentation, the minimum detectable size will be larger than
the size of a critical cluster. However, its effect onn(r) is im-
plicitly included in the condensational growth term and the
boundary condition atr0, which describe how the recently
nucleated particles grow into the measured size range.

2.2 Condensation

The condensational growth rate,g(r, t), can be written as

g(r, t) = g0(t)γ (r) (2)

whereg0(t) is the radius growth rate in the gas kinetic limit,
assuming a mass accommodation coefficient of unity. Its
time dependence is due to the change in concentration of the
condensing species.γ (r) is an effective uptake coefficient
(i.e. the inverse resistance; Molina et al., 1996) given by a
rearrangement of the equation of Fuchs and Sutugin (1970):

1

γ (r)
=

1

α
+

3r

4λvap
−

0.47r

r + λvap
(3)

whereα is the mass accommodation coefficient for the con-
densing species andλvap is the gas phase mean free path of
the condensing vapour.λvap is only weakly dependent on the
nature of the condensing species, and, for use in Eq. (3), is
by definition

λ≡
vap

3Dvap

vvap
(4)

whereDvap is the gas phase diffusion coefficient andvvap is
the mean molecular speed of the condensing vapour.

The radius growth rate can be related to the concentration
of the condensing species in terms of the uptake coefficient,
γ (r), via

g(r, t) =
dr

dt
=

γ (r)vvapMW ([X] − [X]sat)

4ρwNA

(5)

whereMW is the molecular weight of the condensing vapour,
[X] and [X]sat are its actual and saturation concentration, re-
spectively,ρ is the particle density,NA is Avogadro’s number
andw is the mass fraction in the particle of the condensing
species.

As illustrated by Eq. (5), the net rate of condensation is
proportional to the excess concentration of the condensing
species above saturation. During periods of vigorous growth,
the saturation concentration can be assumed negligible com-
pared to the actual concentration. The time dependence of
the growth rate is due to the change in vapour concentra-
tion, while the size dependence is due to the size dependence
of the uptake coefficient,γ (r). This size dependence dis-
appears for particles with radii much smaller than the mean
free path,λvap, which is typically about 130 nm at one bar.
When [X]>>[X]sat, then the Kelvin effect does not exert a
significant size dependence on the net growth rate.

Condensation is a growth process for the particle and a loss
process for the gas-phase condensing species. The pseudo-
first order loss rate of the vapour due to condensation (also
called “condensation sink”) is given by

kcond(t) =

r∞∫
r0

γ (r)πr2vn(r, t)dr (6)

2.3 First order loss processes

Any first order loss process that reduces the particle concen-
tration (e.g. deposition, dilution) can be included in the defi-
nition of kL(r); thus, its definition depends on the processes
that it describes. For smog chamber measurements, wall loss
is the main first order loss process; this depends only on par-
ticle size, if the mixing is assumed constant in time. Two
first order processes relevant for smog chamber studies are
discussed here: wall loss by diffusional deposition and wall
loss by gravitational settling. For small particles, wall loss by
diffusion is most important, while for larger particles, loss by
gravitational settling is larger.

A number of chamber studies (Crump and Seinfeld, 1981;
McMurry and Rader, 1985; Bienenstock, 2000; Hoppel et
al., 2001) have reported a first order rate constant,kdiff (r),
for diffusional wall loss that is proportional to the square root
of the Brownian diffusion coefficient,DB(r). Thus,kdiff (r)

is given by

kdiff (r) = Cdiff

√
DB(r) (7)

whereCdiff is a proportionality constant (in cm−1 s−1/2) and
DB(r) is the Brownian diffusion coefficient of a particle of
radiusr. The value of the proportionality constant,Cdiff , is
dependent on the dimensions of and the amount of turbu-
lence in the chamber, and its value can only be determined
empirically.
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The first order rate constant for wall loss by gravitational
settling,kgrav(r), is given by

kgrav(r) = mpart(r)B(r)G
S

V
Fs (8)

wherempart(r) is the mass andB(r) is the mobility of a par-
ticle of radiusr, G is the acceleration by gravity,S/V is
the surface to volume ratio of the chamber, andFs is the di-
mensionless ratio of projected horizontal surface area to total
surface area in the chamber.

For atmospheric measurements,S/V is the inverse of the
height of the planetary boundary layer, andFs is unity. The
effect of dilution can be included by using a suitable tracer
(Verheggen and Mozurkewich, 2002).

2.4 Coagulation

The second order coagulation rate constants,kC(r1, r2), are
calculated according to Sceats (1989). Enhancement factors
due to van der Waals forces are included, using a Hamaker
constant of 6.4×10−20 J, as determined from coagulation
rates measured for H2SO4 (72% by mass) particles between
49 and 127 nm diameter by Chan and Mozurkewich (2001).
Since these rate constants are defined so as to be consistent
with chemical kinetics conventions for reactions between
identical particles, there is a factor of two in the coagulation
loss rather than a factor of1

2 in the production term.
When only scavenging by larger particles is considered,

coagulation acts as a loss term and can be treated as pseudo
first order. Then the pseudo-first order coagulation rate con-
stant,kC,I (r1, t), is given by

kC,I (r1, t) =

r∞∫
r0

kC(r1, r2)n(r2, t)dr2 (9)

3 Obtaining growth rates

Normally, the GDE would be used to calculate the evolution
of particle size distributions using input parameters such as
growth rate and coagulation rate constants. Here we used the
measured change in the cumulative size distribution over a
finite time interval,1Nc(rc)/1t , as an input variable, and
use non-linear regression analysis to determine one or more
parameters, such as the growth rate. Thus, this is a form of
inverse modeling.

Specifically, in this work we focus on determining the gas
kinetic growth rate,g0(t), by fitting 1Nc(rc)/1t as a func-
tion of particle size. By applying this procedure to a series
of consecutive time intervals, the growth rate as a function
of time is obtained. Effects of other processes, such as de-
position or wall loss, dilution, and coagulation can also be
investigated by modifying their assumed values or by fitting
some of them as part of the regression analysis.

To apply the GDE to discrete size distribution data, the
differentials of Eq. (1) are approximated by finite differences,
both in terms of the time interval between two measurements,
and the size difference between two neighbouring size bins.
The integrals are evaluated as straight summations. In the
following, r and rc stand for the radius at the logarithmic
centre of a size bin, and1r is the size bin width. All contri-
butions to1Nc(rc)/1t and ton(r) are evaluated at the bin
centre, and are assumed to be constant over the size bin. Each
SMPS scan takes a finite amount of time. The measurement
time for a scan is taken to be the time at which the SMPS
detected the maximum in the number density.

The two coagulation terms have one fitting parameter; this
multiplies the production and loss terms by a single value,
and thus always conserves volume. Though the size depen-
dence of coagulation rate constants is considered, it is not
varied by the regression analysis. Both coagulation loss and
production are included in the regression analysis. These
processes are often either ignored or treated only as a loss
process for particle number. However, their effect is often
significant, even when the size distributions are narrow and
mono-modal. Coagulation with particles smaller than the
minimum detectable radius is not included in the determi-
nation of the growth rate, because their concentration is not
known. This may lead to an overestimation of the condensa-
tional growth rate if coagulation with those undetected par-
ticles contributes to the overall growth of the measured par-
ticles. For the application to smog chamber data, the first
order losses include wall losses by diffusion and by gravi-
tational settling; each is proportional to a single parameter
(Cdiff and density). For the condensation term,g0(t) (see
Eq. 2) is the default fitting parameter. Other parameters, such
asα or Dvap, could also be fit, but this is only useful if the
particle size range is wide enough for there to be a significant
diffusion limitation to the uptake coefficient. We can assume
thatg(r∞)n(r∞)=0, provided that the concentration atr∞ is
very small compared to the concentration at the distribution
maximum.

In Eq. (1), the change in particle number over an in-
finitesimal time interval,∂Nc(rc)/∂t , is expressed in terms
of n(r, t), the size distribution at timet . However, in the fi-
nite difference approximation, the left hand side of Eq. (1)
becomes the rate of change in particle number from timet1
to time t2. Thenn(r, t) is no longer precisely defined; it has
to be approximated as an average ofn(r, t1) andn(r, t2). The
most common way of averaging amounts to taking the av-
erage value ofn(r, t1) andn(r, t2) at constant radius,r (e.g.
McMurry and Wilson, 1982):

n(r, t) ≈
n(r, t1) + n(r, t2)

2
(10)

Since the number density is a function of both time and ra-
dius, Eq. (10) represents an approximation to, and not the
definition of,n(r, t). For example, consider a narrow distri-
bution that grows so rapidly that the change in size between
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two successive measurements is greater than the width of the
distribution. Then Eq. (10) gives a bimodal distribution with
peaks near the initial and final modal sizes. But the correct
average, which satisfies the GDE, is a mono-modal distribu-
tion with a peak between the initial and final modal sizes and
spread over the full range of initial and final sizes.

From sensitivity studies with synthetic data, we conclude
that when the radius growth over a single time interval is less
than (3×σ ) nm (equivalent to a growth rate of 54 nm h−1,
for a relative geometric standard deviation ofσ=1.5 and a
5 min scan time), the error in the growth rate is less than 5%.
Therefore the approximate average as defined by Eq. (10) is
used in the regression analysis.

3.1 Finite difference approximation of the coagulation term

The contribution of coagulation loss to1Nc/1t is deter-
mined by numerically evaluating the integrals in Eq. (1). The
coagulation production term is less straightforward, because
of the Jacobian factor, (r/r2)

2 (Williams and Loyalka, 1991).
This factor accounts for the fact that the radius of the pro-
duced particle is not the sum of the radii of the two coagulat-
ing particles. It is difficult to evaluate numerically because
the discreteness of the size bins makes it impossible for all
the initial and final radii to correspond to bin centres. This
difficulty can be avoided by recognizing the physical basis
of the Jacobian factor: It describes the way that the particles
produced by coagulation are spread out over the distribution.
In a numerical calculation it is more natural to simply con-
sider all possible pairs of bins and to distribute, for each pair,
the coagulation products between bins in a manner that con-
serves both number and mass. This distribution between bins
is equivalent, for a discrete distribution, to applying the Ja-
cobian factor.

In our procedure, we choose the sizesr1 andr2 of the two
coagulating particles to be at bin centres, namedri andrj ,
respectively, to distinguish them from usage in the continu-
ous version of the GDE (Eq. 1). The produced particles of
radiusr=((ri)3+(rj )3)1/3 are divided over two neighbouring
size bins using a procedure that is similar to those used in
forward modeling exercises (Toon et al., 1988; Jacobson et
al., 1994). A fraction,fc, of these particles is assigned to
the size bin with centre radiusrhigh>r, and a fraction (1−fc)

is assigned to the bin with centre radiusrlow<r. The centre
radius of the smallest size bin to be included in the cumu-
lative number concentration is denoted byrc. Then, in the
discrete form of Eq. (1), the rate of change of the cumulative
distribution due to the coagulation production term becomes

1Nc(rc)

1t
=

i=bin∞∑
i=bin0

(
j=bin∞∑
j=bin0

(
fc(rc, i, j)kC(ri, rj )n(ri)n(rj )1ri1rj

))
(11)

where

fc = 0 if rc < rlow (12a)

fc =
r3

− r3
low

r3
high − r3

low

if rlow < rc < rhigh (12b)

fc = 1 if rc > rhigh (12c)

Particles are not allowed to be formed outside the mea-
sured size range; this requires that the size distribution ex-
tends well beyond the size range for which concentrations
are significant. This contributes to internal consistency and
offers a useful quality control check, in that the total coagula-
tion loss should equal twice the total coagulation production.
A full description of the numerical details is provided by Ver-
heggen (2004).

3.2 Weighted fitting of the GDE to the measured data

To decrease the effects of noise in the data, more accurate
measurements carry more weight in the regression analysis
than less accurate measurements. Via an iterative procedure,
the sum of the weighted squared differences (χ2) between
fitted and measured value of1Nc/1t is minimized for all
measured size bins simultaneously, so the resulting value of
the growth rate (and/or other fitting parameters) is the opti-
mum value taking into account all size bins (or a specified
sub-range of bins).χ2 is defined as:

χ2
=

r∞∑
r0

(
yfit(rc) − ymeas(rc)

σmeas(rc)

)2

(13)

where yfit(rc) is the fitted value,ymeas(rc) is the mea-
sured value, andσmeas(rc) is the standard deviation of
1Nc(rc)/1t . PARGAN uses the non-linear least-squares
procedure in Igor Pro to search for the parameter values
that minimizeχ2. Igor Pro uses an implementation of the
Levenberg-Marquardt algorithm, as described by Press et
al. (2002). If the values of the standard deviations are good
estimates of the actual errors, thenχ2 is of the same order
of magnitude as the number of degrees of freedom; larger
values ofχ2 indicate that additional sources of error were
present.

We estimateσ(rc) by:

σ(rc) =[
i=bin∞∑
i=binrc

{
1ri

(
2n2

min(ri) + (none(ri)n(ri, t1)) + (none(ri)n(ri, t2)) + (Qn(ri, t1))
2
+ (Qn(ri, t2))

2)}] 1
2

t2 − t1

(14)

wherenmin(ri) is the concentration,dN(ri)/dri , at size bini
corresponding to the minimum incremental number of parti-
cle counts,none(ri) is the concentration corresponding to one
measured count in size bini, andQ is an empirical, size in-
dependent, dimensionless constant, discussed in the follow-
ing. Heret1 andt2 are the times at the beginning and end of
the time interval1t . The summation in Eq. (14) is required
since this is the standard deviation of a cumulative concen-
tration for all size bins larger than the one centred around
rc.
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The first term in Eq. (14) describes the variance due to
measuring only the minimum increment of counts. Depend-
ing on how the counts are measured, this increment may be
greater than unity; for the Calspan measurements, this min-
imum increment was 14 counts. This term only contributes
significantly toσ(rc) when the number of counts in the size
bin is small. It accounts for the fact that a measurement of
zero counts is not infinitely accurate and prevents the weight
from becoming infinity when zero counts are recorded. The
factor of 2 accounts for the fact that this term, as the others,
is included for the measurements at both ends of the time
interval.

The next two terms describe the usual variance
due to counting statistics, for each measurement time,
σ(ri)=n(ri)/

√
counts. The last two terms in Eq. (14) de-

scribe the variance due to uncertainty in flow rates or other
sources of error that are directly proportional to the concen-
tration. The value of the constant,Q, was determined empir-
ically. At high concentrations, variations in concentration are
typically 1% to 2%; this is much larger than expected from
counting statistics. For the Calspan experiments,Q was cho-
sen to be 0.01, based on obtaining the correct order of mag-
nitude for the value ofχ2. The error bars that we report for
fitting parameters are based on the scatter around the fit.

4 Application to smog chamber measurements: wall
loss, coagulation, and growth rate

The measurements were conducted in Calspan’s 590 m3 en-
vironmental chamber during October and November 1998;
Details of the chamber and its instrumentation, along with
results from selected case studies on the ozonolysis ofα-
pinene are given by Hoppel et al. (2001). To illustrate the
use of PARGAN, we apply it to an experiment in which SO2
oxidation resulted in particle nucleation and growth.

4.1 Chamber characteristics and experimental methods

The Calspan chamber has a total volume of 590 m3 with a
diameter and height of both 9.1 m. This provides a surface
to volume ratioS/V of 0.67 m−1 and a relative projected
horizontal surface areaFs of 0.167. It has a large mixing
fan and the interior is teflon coated. A filtration system low-
ers measured gas phase and aerosol concentrations to below
detectable levels by overnight filtration. Prior to each exper-
iment, the chamber was filtered overnight, then sealed while
background particle and gas phase concentrations were mon-
itored for one hour. Air removed from the chamber for sam-
pling was replaced through activated charcoal and absolute
particle filters.

The aerosol size distribution from 4.4 to 404 nm radius
was measured using a NRL DMA and MetOne 1100 CNC
in scanning mode. The filtered and re-circulated sheath air
of the DMA was dried and the aerosol sample was removed

from the chamber through a diffusion dryer. A complete scan
was measured every 288 s. The measured size distributions
were corrected for particle losses in the sample lines and for
reduced CPC counting efficiency at small particle sizes prior
to data analysis.

4.2 Determination of the wall loss and coagulation rates

The growth and nucleation rates determined by PARGAN de-
pend on the values used for the wall loss and coagulation
rate constants. Those constants can be determined by apply-
ing PARGAN to experimental data obtained under conditions
under which no particle growth was occurring.

Although coagulation rate constants may be calculated
theoretically, there is considerable uncertainty in the results.
To account for this, we introduce a dimensionless parame-
ter, the coagulation multiplier,Ccoag, by which the theoreti-
cal coagulation rate constants are multiplied in order to agree
with the measurements. PARGAN enables the determination
of bothCcoagand the proportionality factor for the wall loss
(Cdiff in Eq. 7) by means of regression analysis. The rate of
change of total particle volume and number can also be used
to determine these values; the two methods give consistent
results.

Both Ccoag andCdiff are determined from an experiment
conducted on 16 November 1998. The oxidation of gas phase
SO2 induced particle nucleation and growth in the absence
of pre-existing aerosol. The size distribution was allowed
to evolve in the dark, during which time coagulation was the
dominant process occurring. The air in the chamber was then
circulated through a filter to produce a substantial reduction
in number concentration to around 1.3×104 cm−3; after this,
both wall loss and coagulation were expected to be impor-
tant. This last segment of the experiment was used in the
analysis described in the following.

First, the rate of change in particle volume and number
are used to provide an estimate of the wall loss and coag-
ulation rates. In the absence of condensation, the decrease
of particle volume is caused solely by wall losses, since co-
agulation does not alter the total volume. To filter out the
effect of random counts in the larger size bins, only contribu-
tions from particles below 50 nm are included in determining
the measured particle volume. This includes the entire dis-
tribution, which had number and volume maxima at 14 and
17 nm radius, respectively. Since these are ultrafine particles,
gravitational settling can safely be ignored. Figure 1 shows
the measured particle volume and number as a function of
time. Fitting Eq. (7), integrated over the distribution, to the
observed decrease in particle volume over the time interval
from 14:30 to 15:15 yieldsCdiff =3.6×10−3 cm−1 s−1/2.

The decrease in particle number is caused by both wall
loss and coagulation. By assuming that there is no conden-
sation growth, that the wall loss is given by Eq. (7) with
Cdiff =3.6×10−3 cm−1 s−1/2, and that the coagulation rate
constants are as calculated except for a common unknown

Atmos. Chem. Phys., 6, 2927–2942, 2006 www.atmos-chem-phys.net/6/2927/2006/



B. Verheggen and M. Mozurkewich: Determination of particle growth and nucleation rates 2933

multiplier (Ccoag), the GDE can be numerically integrated
with respect to size. This yields an equation that depends
on Ccoag and provides the change in number concentration
over any given time interval. Fitting this to the observed de-
crease in particle concentration from 14:30 to 15:15 yields
Ccoag=1.6.

Using these estimates ofCdiff and Ccoag as inputs
in PARGAN gives a best fit average growth rate of
−0.02±0.32 nm h−1, as expected since no condensation
should have occurred during this segment of the experiment.
Regression analysis using PARGAN can also be used to de-
termine these parameters; however, it proved to be impos-
sible to simultaneously fit both of these parameters and the
growth rate. When the condensational growth rate was set
to zero, the best fit yieldedCdiff =3.7×10−3 cm−1 s−1/2 and
Ccoag=1.5. These values are in excellent agreement with the
results from inspecting the rate of change in particle volume
and number, discussed above.

To examine the effect of ignoring coagulation, we set
Ccoag=0. This yieldedCdiff =8.5×10−3 cm−1 s−1/2, signifi-
cantly larger than when coagulation was included. The same
value was found when the decrease in particle number was
fit by an exponential decay while ignoring coagulation. This
shows that the wall loss rate can be significantly overesti-
mated when coagulation is neglected, as is often done in
chamber experiments. Note that the number concentration
decay plotted in Fig. 1 appears to be first order in spite of the
significant effect of coagulation.

In the subsequent data analysis the wall loss by diffusion
is given bykdiff =(3.6×10−3 cm−1 s−1/2)×D

1/2
B . The theo-

retical coagulation rate constants are multiplied by a factor
of 1.5.

The use of a single coagulation multiplier is somewhat un-
realistic in that deviations from calculated coagulation rate
constants may vary with particle size. Sensitivity studies
indicate that the fit is improved at small particle sizes by
using even larger values ofCcoag. However, the data are
insufficient to draw any firm conclusion about its size de-
pendence. Organic particles are expected to have somewhat
smaller Hamaker constants, but the dependence of coagula-
tion rate constants on the Hamaker constant is not strong for
Hamaker constants larger than 1e-20 J. We have no expla-
nation for the surprisingly large coagulation rate constants
found in this analysis.

Since the wall loss and coagulation rates can only be ac-
curately determined when the condensational growth rate is
zero (or accurately known), not all experiments are equally
suitable to determineCdiff andCcoag. However, similar val-
ues of these parameters were found from regression analysis
of another experiment, suggesting that the wall loss and co-
agulation rates were relatively constant from experiment to
experiment.
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Fig. 1. Observed change in total particle volume and number during
dark part of experiment, after filtering of the chamber. Due to the
absence of condensation, the time dependence of the volume allows
the determination of the wall loss proportionality constant,Cdiff ,
after which the time dependence of the number concentration allows
the determination of the coagulation correction factor,Ccoag.

4.3 Determination of the growth rate

In the experiment chosen for this example, 20 ppb of CH2O
and 1.2 ppb of NO were injected to generate OH radicals.
At 10:55, 75 ppb of SO2 was injected. Half of the chamber
lights were turned on at 11:09; this started the photochem-
ical production of OH and subsequent oxidation of SO2 to
H2SO4. At 11:59, more SO2 was injected, raising the con-
centration from 36 to 89 ppb, and all chamber lights were
turned on. This was followed by another injection of 20 ppb
of SO2 and 2 ppb of NO at 12:50. The relative humidity dur-
ing the experiment ranged between 75 and 82%. Binary nu-
cleation of H2SO4 with water vapour produced new particles
that subsequently grew by condensation and coagulation.
Figure 2 shows the evolution of the particle number size
distribution. This nucleation and growth experiment ended
when the lights were turned off at 13:37 to determine wall
losses.

The mass accommodation coefficient,α, and the diffusion
coefficient of the condensing species,Dvap, both of which
are included in the apparent uptake coefficient,γ (r), were
held constant at 1 and 0.1 cm2 s−1 respectively (Jefferson et
al., 1997; P̈oschl et al., 1998). The saturation concentration
of the condensing species was assumed to be zero. For the
experiments investigated, the magnitude ofα, Dvap, and sat-
uration vapour pressure can not be realistically verified by
regression analysis since the fits were insensitive to these pa-
rameters. Although the regression analysis is not sensitive
to α, the inferred concentration of condensing vapour is (see
Eq. 5). A size dependence of the growth rate due to Kelvin
effect was not discernible.
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Fig. 2. Evolution of measured size distributions. Colour indicates
particle number density. Half the lights were turned on at 11:09, the
second half was added at 11:59. SO2 injections took place at 10:55,
11:59 and 12:50.

Results for the growth rate, obtained from regression anal-
ysis using PARGAN, are shown in Fig. 3. No growth rates
could be determined prior to 11:45 since the freshly nucle-
ated particles had not yet grown into the DMA size range.
The growth rate can be related to the concentration of H2SO4
vapour by using Eq. (5). The values forρ andw were deter-
mined by interpolating in the tables of Gmitro and Vermeulen
(1964). Assuming fast equilibration at the low relative hu-
midity (7.5%) inside the DMA,w was found to be 67% and
ρ was 1.57 g cm−3. Under these conditions the growth rate
in the kinetic limit (assumingα=1) is given by:

g0(t) = 0.86× [H2SO4(t)] (15)

with [H2SO4(t)] in pptv andg0(t) in nm h−1. Figure 3 gives
both the growth rate and the equivalent H2SO4 concentration
according to Eq. (15).

As can be seen in Fig. 3, the growth rate increased imme-
diately after the SO2 injections. The maxima in the growth
rate lag behind the SO2 injections by 5 to 10 min; this is due
to the time required for the H2SO4 concentration to reach
steady state. The time to reach steady state can be approxi-
mated by the lifetime of H2SO4, defined as the inverse of the
pseudo-first order loss rate for condensation and wall loss. At
the start of the experiment, the lifetime was around 15 min;
it decreased to approximately 4 min at 12:50 due to the in-
crease in particle surface area. These lifetimes agree reason-
ably well with the observed time delay between SO2 injec-
tion and the maximum in the growth rate.

The contour plot of consecutive size distributions (Fig. 2)
allows an average growth rate of 6 (±1) nm h−1 to be de-
termined for the time interval from 12:00 to 13:30, with a
slight decrease in magnitude from beginning to end. The
maxima in the growth rate that are found via regression anal-
ysis (Fig. 3) are not discernible from this contour plot. We
found similar results for other case studies. This suggests
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Fig. 3. The particle growth rate determined using PARGAN. The
growth rate is proportional to the H2SO4 concentration (see Eq. 5),
the corresponding values of which can be read off the right axis.
Lights were turned on at 11:09; additional SO2 injections took place
at 11:59 and 12:50 (indicated by arrows).

that PARGAN allows the determination of the growth rate
with much better time resolution than the common method
of fitting a curve through the banana-shaped contour plot of
consecutive size distributions.

Although the growth rate found by regression analysis de-
pends on to the values chosen for the coagulation and wall
loss rate constants, the sensitivity is not great for the case in-
vestigated here. The growth rate changes by less than 10% if
the coagulation multiplier is changed from 1.5 to 1.0 or if the
wall loss rate is doubled.

Investigating other case studies from the Calspan measure-
ments has shown that the concentration of the condensing
species, as deduced from the growth rate via Eq. (5), agrees
well with calculations using a simple chemical box model.
This shows that an accurately known growth rate, as de-
termined using PARGAN, can provide valuable information
about the gas phase and heterogeneous chemistry of the sys-
tem under investigation (Verheggen, 2004).

5 Obtaining nucleation rates

As a group of newly nucleated particles grow in size, their
concentration changes as a result of coagulation and wall
loss. We use the term ”cohort” to refer to such a group of
particles that are formed at approximately the same time.
The determination of the nucleation rate is based on follow-
ing this process backwards in time to sizes that are smaller
than the minimum measured size. Starting from the measure-
ment time, the change in cohort radius during each previous
time step is determined from the growth rate. The evolution
of cohort radius and number density backwards in time is
evaluated for each measured size bin at each measurement
time. The time when the backwards calculated radius equals
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the assumed radius,rN , of the critical cluster (0.5 nm radius,
following Weber et al. (1997) and Kulmala et al. (2000)) is
taken to be the time of particle formation,tN .

The number density of the cohort is determined for each
previous time step by integrating the losses that occurred in
the time interval. The nucleation rate,J , is defined as the rate
at which particles grow past the radius of the critical cluster.
The number of newly nucleated particles,n(rN , tN ), is re-
lated to the nucleation rate and the growth rate via (Weber et
al., 1995; Verheggen and Mozurkewich, 2002).

J = n(rN , tN )g(rN , tN ) (16)

In order to evaluate the time of formation and the nu-
cleation rate, the growth rate has to be known for all time
intervals between measurement time and formation time.
The growth rate can only be determined from measurements
when at least part of the size distribution is measured. For
atmospheric measurements, these growth rates can only be
used to determine the formation time and nucleation rate
when the measured size distributions reflect the same air
mass as that where nucleation actually took place. If those
conditions are not met, but the concentration of condensing
species (e.g. H2SO4) is known or can be estimated from time
of formation onwards, theoretical growth rates can be calcu-
lated, and used to determine the time of formation and nucle-
ation rate (Verheggen and Mozurkewich, 2002).

5.1 Evaluation of number density backwards in time

The loss terms of the GDE are applied to a cohort of par-
ticles, as they grow in size. The concentration of particles
at the critical cluster size is determined by numerically in-
tegrating the pseudo-first order losses that occurred between
the time of nucleation (tN with radiusrN ) and the time of
measurement (tM with radiusrM). To this end, the measured
particle number density is multiplied by a correction factor
for wall losses by diffusion,DF, and a correction factor for
coagulation scavenging,CF:

n(rN , tN ) = n(rM , tM) × DF × CF (17)

where

DF = exp

 tM∫
tN

kdiff (r, t)dt

 = exp

 rM∫
rN

kdiff (r, t)

g(r, t)
dr

 (18)

and

CF = exp

 tM∫
tN

kC,I (r, t)dt

 = exp

 rM∫
rN

kC,I (r, t)

g(r, t)
dr

 (19)

wherekdiff (r, t) is the first order rate constant for wall losses
by diffusion (Eq. 7) andkC,I (r, t) is the pseudo first order
rate constant for coagulation scavenging (Eq. 9). The time
dependence ofkdiff (r, t) is due to the cohort radius changing
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Fig. 4. Measured (solid line) and reconstructed (symbols) size dis-
tributions for 16 Nov 12:22. Reconstruction is based on size dis-
tributions, measured at later times. Colour of symbol indicates the
magnitude of extrapolation,tM−t .

in time. A different procedure is followed to obtain an addi-
tional correction factor for within-mode coagulation; this is
described in Sect. 5.4.

These correction factors are equivalent to evaluating the
GDE, without the growth term, as a total derivative with re-
spect to time; the effect of growth is implicitly included via
the change in cohort radius. The detailed evaluation of the
correction factors will be described in subsequent sections.
The correction factors can be thought of as the fractional de-
crease in the number density from time of nucleation to time
of measurement. Note that Eqs. (17) through (19) are ap-
plied to a cohort of particles as they grow in size; thus bothr

andt are changing. The final correction factors,DF andCF,
are the product of the individual correction factors,DFi and
CFi , which are evaluated over the cohort radii between con-
secutive measurement times. This has the advantages that the
growth rate can be considered constant over each time inter-
val so that it can be taken out of the integral. Also, it enables
the evaluation of correction factors for any time and/or size,
an example of which is described next.

The extrapolated number concentration at a time,t , may
be obtained by replacingtN with t in Eqs. (17) through
(19). This allows the characterization of the size distribu-
tions as they are predicted to have existed at previous time
steps. The resulting “reconstructed” size distributions can
be compared to the measured size distribution for the same
time interval. They should all closely resemble each other if
the extrapolations are accurate and internally consistent and
if the measurement variability is small compared to the dy-
namic changes in the size distribution over time. An exam-
ple of such a collection of reconstructed size distributions
is given in Fig. 4. The measured distribution is matched
reasonably well, especially in light of the extrapolations on
which this calculation is based. The approximate treatment
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of within-mode coagulation is not included in these recon-
structed size distributions.

Figure 4 also illustrates the concept of how the number of
nucleated particles is determined: Similar figures depicting
the reconstructed size distributions for earlier times would
extend down to 0.5 nm radius, thus providing the number
density at the time of nucleation used in Eq. (16). The recon-
structed size distributions shown in Fig. 4 are valid for 12:22
and are derived from measurements made at later times.
None of those measurements provided reliable data on the
size distribution below 1.4 nm. This time was chosen to pro-
vide enough overlap with the measured distribution to allow
them to be compared.

5.2 Correction for wall losses

In the kinetic limit, the diffusion coefficient varies as 1/r2;
thus, Eq. (7) becomeskdiff (r)=C/r. Using the result of
Sect. 4.2 givesC=4.1×10−4 nm s−1. For one time step, the
correction factor for deposition,DFi , can be solved by direct
integration

DFi = exp

 r(t2)∫
r(t1)

kdiff (r)

g
dr

 = exp

C

g

r(t2)∫
r(t1)

1

r
dr

 =

(
r(t2)

r(t1)

)C
g

(20)

wheret1<t2. Since the growth rate,g(r, t), is assumed con-
stant for the time interval fromt1 to t2, and independent of
size for the small change in cohort radius fromr(t1) to r(t2),
it can be taken out of the integral and is written asg instead.
The total correction factor for wall losses is obtained by mul-
tiplying the individual correction factors for each interval be-
tweenrM andrN . The first equality in Eq. (20) is generally
applicable to any first order process, whereas the second and
third equality are specific to wall losses of small particles in
smog chamber studies.

5.3 Correction for coagulation scavenging

As particles grow from the critical cluster size to the mea-
sured size they undergo coagulation. We divide the coagula-
tion events that might occur into two subsets. First, we have
the coagulation of the growing cohort of particles with parti-
cles that are larger than both the cohort size and the minimum
measured size. We call this “coagulation scavenging” since
it is a first order loss process for the growing particles. Since
we know the size distribution of the larger particles, we can
explicitly calculate a pseudo-first order rate constant for the
loss of particles from the growing cohort. The second sub-
set consists of coagulation of cohort particles with particles
of comparable or smaller sizes. This “within-mode coagula-
tion” is more difficult to treat. We describe our treatment of
coagulation scavenging in this section and treat within-mode
coagulation in the next section.

The correction factor for coagulation scavenging,CFi ,
over the time interval fromt1 (with cohort radiusr1(t1)) to t2
(with cohort radiusr1(t1)) is written as

CFi = exp

1

g

r1(t2)∫
r1(t1)

 r∞∫
r ′

0

(kC(r1, r2)n(r2)) dr2

 dr1

 (21)

wherekC(r1, r2) is the second order rate constant for coagu-
lation and where

r ′

0 = r1(t2) if r2 > r0 (22a)

r ′

0 = r0 if r2 < r0 (22b)

Equation (21) is directly analogous to Eq. (19) where the in-
ner integral is the pseudo-first order rate constant for scav-
enging of cohort particles of radiusr1 by all larger particles
of radiusr2, provided that they are within the measured size
range. Performing numerous evaluations of the double in-
tegral in Eq. (21) is cumbersome. The following procedure
can be used to obtain an approximate expression that involves
only a single integral. Since the inner integral is independent
of the cohort radius the order of integration can be exchanged
to obtain

CFi = exp

1

g

r∞∫
r ′

0

n(r2)

r1(t2)∫
r1(t1)

(kC(r1, r2)) dr1

 dr2

 (23)

In order to evaluate this integral analytically, the second
order rate constant is fit to a power law of the form
kC(r1,r2)=h(r2)+c(r2)×r

p(r2)

1 . There is a separate set of
parameters (h,c, andp) for each discrete value of the larger
radius,r2 (corresponding to the bin centres). This power law
can be analytically integrated, after which the outer integral
is numerically integrated. This yields

CFi =

exp

1

g

j=bin∞∑
j=bin′

0

[(
hj (r1(t2) − r1(t1)) +

cj

pj + 1

(
r1(t2)

(pj +1) − r1(t1)
(pj +1)

))
n(rj )1rj

]
(24)

The distribution functionn(rj ) is evaluated as the average
betweent1 and t2. The total correction factor for losses by
coagulation scavenging is obtained by multiplying the indi-
vidual correction factors for each interval betweenrM and
rN .

5.4 Correction for within-mode coagulation

The correction described in the previous section only ac-
counts for coagulation with particles larger than the growing
cohort. Coagulation between particles of comparable sizes
both reduces the number and increases the size. We treat this
“within-mode” coagulation approximately using a first or-
der perturbation method. Since these corrections for within-
mode coagulation are approximations, they bear a relatively
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large uncertainty. It is clear that if these correction factors
are large (e.g. exceeding a factor of 5), the resulting values
of the nucleation rate become highly uncertain, since such
rapid within-mode coagulation could have erased a clear re-
lationship between the number of nucleated and the number
of measured particles.

Two different special cases, representing opposite ex-
tremes, are considered. The first limiting case assumes that
growth and nucleation are in steady state, and thus constant,
between the time of nucleation and the time of measurement.
Consequently the size distribution function in the nucleation
mode has a maximum at the critical cluster size, decreases
with increasing size, and does not change with time. Nucle-
ation may approach steady state when it is prolonged in time
due to a reasonably constant super saturation of vapour.

The second limiting case assumes that there is a sharp
maximum in the nucleation rate (a nucleation pulse) followed
by growth of the nucleated particles. Consequently the size
distribution function in the nucleation mode has a maximum
at a size larger than that of the critical cluster. The pulse
model assumes that the distribution consists of a cohort of
identically sized particles, with a total number density ofN .
A nucleation pulse may occur due to a transient increase in
vapour concentration to a value above some threshold. This
is especially likely in a smog chamber, where the tempera-
ture and relative humidity are relatively constant, and more
precursor gas is periodically injected.

The mathematical derivation of the limiting case of steady
state nucleation is given in appendix A; the correction factor
is given by

n(rN )

n(rM)
= b1(rN )

1 + n(rM)

rM∫
rN

q(r)

b1(r)
dr

 (25)

where

b1(r) = exp

1

g

rM∫
r

(
kdiff (r

′) + kC,I (r
′)
)
dr ′

 (26)

and

q(r) =
2b1(r)

g

rM∫
rN

kC(r, r1)b1(r1)dr1

−
2

g

rhalf∫
rN

kC(r1, r2)b1(r1)b1(r2)

(
r

r2

)2

dr1 (27)

where (r1)
3+(r2)

3
=r3 andg is the growth rate, which is as-

sumed to be constant and independent of size for the nucle-
ation mode particles. The second integral is symmetrical
with respect to exchange ofr1 andr2; therefore, instead of
evaluating it up tor, it is evaluated as twice the integral up to
rhalf=(r3/2)1/3. This avoids numerical instability by prevent-
ing the Jacobian factor from approaching infinity. Note that

b1(rN ) is the correction factor for pseudo-first order losses,
DF×CF (Eqs. 22 and 23). The factor within brackets in
Eq. (25) is the correction factor for within-mode coagulation,
assuming steady state nucleation.

All integrals, except the one in Eq. (26), are determined
numerically. Naturally, there is a trade-off between the ac-
curacy of the solution and computing time. A size spacing
for numerical integration of 0.5 nm gives satisfactory results;
reducing the step size to 0.01 nm changes the results by less
than 10%.

To save computing time in the repeated calculation of
b1(r), an approximate, analytic integration is used. The wall
loss rate constant is given by Eq. (20) and the pseudo-first
order rate constant for coagulation is fit to the power law
kC,I (r, t)=h(t)+c(t)×rp(t), where the fitting parameters are
a function of measurement time,t , andr is the cohort radius.
Substituting these functions into Eq. (26) yields

b1(r) =

( rM

r

)C
g

× exp

{
1

g

(
h (rM − r) +

c

p + 1

(
r
(p+1)
M − r(p+1)

))}
(28)

The growth rate and the fitting parameters are averaged over
the integration interval, i.e. from the time when the cohort
radius wasr to the time of measurement, when the cohort
radius wasrM . A logarithmic average was used, since this
was found to give good agreement betweenb1(r) and the
first order correction factors,CF×DF.

The second limiting case is that of a nucleation pulse; this
is treated in detail in Appendix B. The correction factor is
given by

N(rN )

N(rM)
= b1(rN )

1 + N(rM)

rN∫
rM

p(r)dr

 (29)

whereb1(r) is given by Eq. (26) and

p(r) =
kC(r, r)b1(r)

g2

(
1

3
rkL,I (r) − g

)
(30)

The quantity within brackets in Eq. (30) is the correction fac-
tor for within-mode coagulation, assuming a pulse of nucle-
ation. HereN(rM) is the total number of particles in the
narrow nucleation mode. As in the steady state case,b1(r)

is calculated according to Eq. (28) and all other integrals are
evaluated numerically.

6 Determination of the nucleation rate in the smog
chamber

We now illustrate this procedure by estimating the nucleation
rates corresponding to the data in Figs. 2 and 3. Nucleation
rates can only be determined when the growth rate is known,
that is, for the period after 11:40. Two distinct particle modes
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Fig. 5. Nucleation rates (coloured circles) and H2SO4 mixing ra-
tios, proportional to the growth rate (black double triangles with
solid line), both determined using PARGAN. Colour of symbol
indicates the magnitude of extrapolation,tM−tN . (a) Excluding
within-mode coagulation.(b) Including within-mode coagulation,
assuming a nucleation pulse.

can be seen in Fig. 2. The first mode seems to consist of par-
ticles formed following both the first and second SO2 injec-
tions; the CPC readings show that nucleation bursts followed
both injections. However, the particles formed in the first
burst did not reach sizes detectable by the DMA until shortly
before the second SO2 injection.

Calculated nucleation rates (only including the measured
size bins which form the first mode) are shown in Figs. 5a
and b. The former excludes the effects of within mode co-
agulation, whereas the latter includes these effects, assuming
a pulse of nucleation. The nucleation rate can be seen to
reach a modest maximum at approximately the same time as
the H2SO4 mixing ratio (determined from the growth rate),
suggesting that H2SO4 is responsible for both nucleation and
growth. It can be seen that including within-mode coagula-
tion almost doubles the estimated nucleation rates because it
accounts for more particle losses between time of formation
and time of measurement, while at the same time it reduces
the scatter in the results. In contrast, using the steady-state

treatment of within-mode coagulation increases the scatter,
suggesting that the pulse model is more appropriate. The
product of the regular correction factors,CF×DF, ranges be-
tween 1.5 and 8, where the larger values are derived from the
larger measured size bins, since they required a longer ex-
trapolation time,tM−tN , to obtain the nucleation rate. If the
coagulation multiplier is set to 1 instead of to 1.5, the nu-
cleation rates are reduced by factors of 1.05 to 1.55. The
time evolution of the nucleation rate is not significantly af-
fected, because of the relative insensitivity of the growth rate
to changes in the coagulation (or wall loss) rate constant.

The uncertainty in the nucleation rates depends to a large
degree on the amount of extrapolation necessary to obtain
the correction factorsCF andDF, i.e. ontM−tN (cf. Eqs. 18
and 19). This extrapolation time is used as a colour code in
Figs. 5a and b to provide a sense of the uncertainty of the
resulting nucleation rates relative to each other. The extrapo-
lation has the effect of magnifying any uncertainty in the loss
processes, i.e. in the wall loss and coagulation rate constants,
as well as in the measured size distribution. The fact that all
values for the nucleation rate follow approximately the same
trend suggests that the input parameters have been reason-
ably well characterized. The uncertainty in the magnitude of
the nucleation rates is estimated to be a factor of two to three,
while the time dependence is estimated to be accurate within
5 min. It is likely that the procedure results in some smearing
of the time dependence of the nucleation rate.

Appearance rates for the smallest detectable size can be
obtained by settingrN in Eqs. (18) and (19) equal to the min-
imum radius (4.4 nm in this case). Naturally, these appear-
ance rates are smaller than the nucleation rates. However,
the time dependence of the appearance rate lags well behind
that of the nucleation rate; this obscures the correlation with
H2SO4. The ratio between the nucleation and the appearance
rate (varying between 2 and 6) is larger than the ratio of their
respective uncertainties, and therefore we regard the nucle-
ation rate determined via this procedure to be a physically
more meaningful parameter, and more representative of the
“real” nucleation rate.

For the conditions at 12:00 (T =294 K andRH=82%), the
parameterization of Kulmala et al. (1998a) gives 92 pptv as
the critical H2SO4 mixing ratio for nucleation. This is much
higher than the maximum mixing ratio of 10 pptv deduced
here. The parameterization of Kerminen and Wexler (1996)
gives a critical H2SO4 mixing ratio of 12 pptv for these con-
ditions. This is only a little higher than the mixing ratios
inferred from the particle growth rates and plotted in Fig. 5.

7 Conclusions

A comprehensive method to determine nucleation and
growth rates from measured particle size distributions has
been developed, named PARGAN. The growth rate is de-
termined by non-linear regression of the GDE, taking into
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account the effect of coagulation and deposition. Using
regression analysis to determine the growth rate provides bet-
ter time resolution than the commonly used method of fitting
the banana shaped contour plot of consecutive size distribu-
tions. Nucleation rates are determined by applying the GDE
backwards in time for the measured number density in each
size bin; this includes an approximate method to correct the
evolution of number density for within-mode coagulation.
Since PARGAN includes a full description of aerosol pop-
ulation dynamics, it can also be used to determine empirical
rates of processes such as deposition and coagulation.

The large discrepancies between classical nucleation the-
ory and aerosol measurements clearly show a need for an
empirically based determination of nucleation rates. The
method described here has the potential to be applied to a va-
riety of situations, thereby offering the possibility of acquir-
ing an observationally derived data set for nucleation rates
in controlled laboratory environments as well as in the at-
mosphere. This could provide more insight in the quantita-
tive relation between the nucleation rate and environmental
factors such as precursor concentration, UV radiation inten-
sity, particle surface area, temperature, relative humidity, and
mixing. The results should be useful in developing an empir-
ically based parameterization of the nucleation rate for use in
atmospheric modeling.

The empirical nucleation rates determined via this proce-
dure carry a large uncertainty (at least a factor of 2 to 3),
which is partly due to the extrapolations used and partly due
to the fact that the dynamics of cluster growth (e.g. the size
of the critical cluster) are not well known. It should be noted
that this is a huge improvement over theoretical estimates of
the nucleation rate.

Application of this method to atmospheric measurements
would require a careful analysis of the air mass history to
evaluate the homogeneity of the air mass and the spatial scale
of the nucleation event. The accuracy of the resulting nucle-
ation and growth rates are to a large extent a reflection of
the accuracy in the input data (i.e. the measured size distri-
butions). This program offers a powerful interpretive tool to
study empirical aerosol population dynamics in general, and
nucleation and growth in particular.

Appendix A

Correction for within-mode coagulation assuming
steady state nucleation

Here we derive a simple, analytic model for the change in
concentration as particles grow from the critical cluster size
to the minimum detectable size under steady state conditions.
A true steady state is not needed for this to be applicable; it
is only necessary that the nucleation rate remain reasonably
constant over a time longer than that required for the particles
to grow through this size range. At steady state, in the kinetic

limit, the GDE becomes:

0 = kL,I (r)n(r) + g
dn(r)

dr
+ 2n(r)

r∫
rN

kC(r, r1)n(r1)dr1

−

r∫
rN

kC(r1, r2)n(r1)n(r2)

(
r

r2

)2

dr1 (A1)

whereg is the growth rate, which is assumed to be constant
and independent of size for growth through the nucleation
size range fromtN to tM . Coagulation scavenging by parti-
cles with radii greater than the cohort radius,r, is included
in kL,I (r) as a pseudo-first order process; the coagulation
terms in Eq. (A1) refer to coagulation with particles smaller
than the cohort radius.

The cohort particle number density at a previous time,
n(r), can be estimated from its measured value at a later time,
n(rM), based on a perturbation solution of the form

n(r) =

i=∞∑
i=1

bi(r)n(rM)i = b1(r)n(rM) + b2(r)n(rM)2
+ ...

(A2)

Using only the first two terms, it can be seen that

n(rN )

n(rM)
≈ b1(rN ) + b2(rN )n(rM) (A3)

The right hand side of Eq. (A3) is the correction factor, by
which the measured concentration of particles,n(rM), must
be multiplied in order to obtain the concentration of nucle-
ated particles,n(rN ). Thus,b1(rN ) is the correction factor
for (pseudo-) first order processes, i.e. wall loss and coagula-
tion scavenging, andb2(rN )n(rN ) is the correction factor for
second order processes, i.e. within-mode coagulation.

Now we substitute Eq. (A2) into Eq. (A1) and collect like
powers ofn(rM). Each term in the resulting summation over
i must individually equal zero, because the summation must
equal zero for all possible values ofn(rM). The result is an
infinite number of equations. The first of these equations is
obtained by keeping only the terms proportional ton(rM).
After dividing byn(rM), this “first-order” equation is

0 = kL,I (r)b1(r) + g
db1(r)

dr
(A4)

Note that the coagulation terms do not contribute to this be-
cause those terms are second order and therefore involve at
leastn(rM)2. The solution to Eq. (A4) providesb1(r).

The next equation is obtained by keeping only the terms
proportional ton(rM)2. After dividing by n(rM)2, this sec-
ond order equation is

0 = kL,I (r)b2(r) + g
db2(r)

dr
+ 2b1(r)

r∫
rN

kC(r, r1)b1(r1)dr1

−

r∫
rN

kC(r1, r2)b1(r1)b1(r2)

(
r

r2

)2

dr1 (A5)
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The solution to this equation providesb2(r); this can be
thought of as being the correction factor for within-mode co-
agulation. The key point is that to evaluate the coagulation
terms in Eq. (A5) requires only the first order solution ob-
tained from Eq. (A4).

The boundary conditions for Eqs. (A4) and (A5) are ob-
tained by evaluating Eq. (A2) forr=rM ; this yields

b1(rM) = 1 (A6)

and

b2(rM) = 0 (A7)

Equation (A4) can be rearranged and integrated to give

b1(r) = exp

1

g

rM∫
r

kL,I (r
′)dr ′

 (A8)

Equation (A5) can be rewritten as

0 =
kL,I (r)

g
b2(r) +

db2(r)

dr
+ q(r) (A9)

where

q(r) =
2b1(r)

g

rM∫
rN

kC(r, r1)b1(r1)dr1

−
2

g

rhalf∫
rN

kC(r1, r2)b1(r1)b1(r2)

(
r

r2

)2

dr1 (A10)

Note thatq(r) depends uponr but not onb2(r). The solution
to Eq. (A9) is

b2(r) exp

1

g

r∫
rM

kL,I (r
′)dr ′

 =

−

r∫
rM

q(r) exp

1

g

r∫
rM

kL,I (r
′)dr ′

dr (A11)

If the integration in Eq. (A11) is taken fromrM to rN , we can
substitute Eqs. (A7) and (A8) into the result and then change
the order of integration to obtain

b2(rN )

b1(rN )
=

rM∫
rN

q

b1(r)
dr (A12)

We now substitute Eq. (A12) into Eq. (A3) to obtain the ex-
pression for the correction factor including within-mode co-
agulation, assuming steady state nucleation:

n(rN )

n(rM)
= b1(rN )

1 + n(rM)

rM∫
rN

q(r)

b1(r)
dr

 (A13)

where q(r) is given by Eq. (A10) andb1(r) is given by
Eq. (A8).

Appendix B

Correction for within-mode coagulation assuming
pulse of nucleation

Here we derive a simple, analytic model for the change in
concentration as particles grow from the critical cluster size
to the minimum detectable size following a brief pulse of nu-
cleation. To do this, we assume that all the newly formed par-
ticles have about the same size. This should be applicable if
most nucleation takes place during a time that is much shorter
than that required for the particles to grow to detectable size.
The rate of change of the total number concentration,N(r),
of newly nucleated particles is given by

dN(r)

dt
= −kL,I (r)N(r) − kC(r, r)N(r)2 (B1)

wherer is the time dependent cohort radius. The particle ra-
dius changes due to both condensation and coagulation. Let
g indicate the constant condensational growth rate. To obtain
the coagulational growth rate, (dr/dt)coag, we note that coag-
ulation conserves volume, so thatNr3 is constant if there is
no condensation taking place. Differentiating this constant
with respect to time yields the growth rate when only coagu-
lation is occurring:(

dr

dt

)
coag

= −
r

3N(r)

(
dN(r)

dt

)
coag

=
kC(r, r)rN(r)

3

(B2)

The total rate of change of particle radius is given by the sum
of the condensational and coagulational growth rates, thus(

dr

dt

)
total

= g +
1

3
kC(r, r)rN(r) (B3)

Dividing Eq. (B1) by Eq. (B3) and rearranging yields

dN(r)

dr

(
g +

1

3
kC(r, r)rN(r)

)
+
(
kL,I (r) + kC(r, r)N(r)

)
N(r) = 0

(B4)

which gives the rate of change of particle number with cohort
radius and thus with time.

Now we proceed with a perturbation theory solution as in
Appendix A, so that the correction factor will be given by
Eq. (A3). Substituting Eq. (A2) into Eq. (B4) and collect-
ing like powers ofN(rM) provides the first-order equation,
identical to Eq. (A4), and the second order equation

g
db2(r)

dr
+

db1(r)

dr

(
1

3
kC(r, r)rb1(r)

)
+ kL,I (r)b2(r) + kC(r, r)b2(r)

2
= 0

(B5)

After using Eq. (A4) to eliminatedb1(r)/dr and rearranging,
Eq. (B5) becomes

g
db2(r)

dr
+ kL,I (r)b2(r) =

kC(r, r)b1(r)

g

(
1

3
rkL,I (r) − g

)
(B6)

Atmos. Chem. Phys., 6, 2927–2942, 2006 www.atmos-chem-phys.net/6/2927/2006/



B. Verheggen and M. Mozurkewich: Determination of particle growth and nucleation rates 2941

with boundary conditions given by Eqs. (A6) and (A7). The
solution to Eq. (B6) is

d

dr

(
b2(r)

b1(r)

)
=

kC(r, r)b1(r)

g2

(
1

3
rkL,I (r) − g

)
≡ p(r) (B7)

If rkL,I (r)=3g, thenp(r)=0 and the within-mode coagula-
tion correction is zero; in this case the effect of within-mode
coagulation on the rate of change of particle number (second
term of Eq. B1) is exactly balanced by its effect on the rate
of change of particle size (second term of Eq. B3).

Integrating Eq. (B7) fromrM to rN and using the boundary
condition of Eq. (A7) yields

b2(rN )

b1(rN )
=

rN∫
rM

p(r)dr (B8)

The expression for the correction factor including within-
mode coagulation, assuming a pulse of nucleation, is then
given by

N(rN )

N(rM)
= b1(rN )

1 + N(rM)

rN∫
rM

p(r ′)dr ′

 (B9)

with p(r) given by Eq. (B7) andb1(r) given by Eq. (A8).
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