371 research outputs found

    Exploring the value of defence jobs in the UK

    Get PDF

    End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels

    Full text link
    Multi-hop relay channels use multiple relay stages, each with multiple relay nodes, to facilitate communication between a source and destination. Previously, distributed space-time codes were proposed to maximize the achievable diversity-multiplexing tradeoff, however, they fail to achieve all the points of the optimal diversity-multiplexing tradeoff. In the presence of a low-rate feedback link from the destination to each relay stage and the source, this paper proposes an end-to-end antenna selection (EEAS) strategy as an alternative to distributed space-time codes. The EEAS strategy uses a subset of antennas of each relay stage for transmission of the source signal to the destination with amplify and forwarding at each relay stage. The subsets are chosen such that they maximize the end-to-end mutual information at the destination. The EEAS strategy achieves the corner points of the optimal diversity-multiplexing tradeoff (corresponding to maximum diversity gain and maximum multiplexing gain) and achieves better diversity gain at intermediate values of multiplexing gain, versus the best known distributed space-time coding strategies. A distributed compress and forward (CF) strategy is also proposed to achieve all points of the optimal diversity-multiplexing tradeoff for a two-hop relay channel with multiple relay nodes.Comment: Accepted for publication in the special issue on cooperative communication in the Eurasip Journal on Wireless Communication and Networkin

    Selection for early and late adult emergence alters the rate of pre-adult development in Drosophila melanogaster

    Get PDF
    Background: Circadian clocks have been implicated in the regulation of pre-adult development of fruit flies Drosophila melanogaster. It is believed that faster clocks speed up development and slower clocks slow it down. We established three sets of D. melanogaster populations (early, control and late). The early and late populations were raised by selecting for flies that emerged either in the morning or in the evening under 12:12 hr light/dark (LD) cycles. After 75 generations of selection, the time course and waveform of the adult emergence and activity rhythms of the early and the late populations diverged from each other as well as from the controls. In this paper, we report the consequence of this selection on the rate of pre-adult development. Results: We assayed the pre-adult development time of the selected and control populations under 12:12 hr LD cycles and constant darkness (DD). Under LD cycles, the early populations develop faster than the controls, while the late populations develop slower than the controls. Although flies take longer to develop under DD than in LD, the relative differences between the mean development times of the selected and control populations remain unaltered in DD. In a separate experiment designed to investigate the effect of time of egg collection and experimental conditions on the duration of pre-adult stage, we assayed the development time of the selected and control populations by collecting eggs at different times of the day (morning and evening) and by assaying their pre-adult development time under constant light (LL), LD, and DD conditions. Irrespective of the time of egg collection and assay light regime, the late flies continue to develop slower than the early flies. Conclusion: The results of our study clearly indicate that selection on the timing of adult emergence alters the rate of pre-adult development in D. melanogaster. The timing of egg collection as well as assay light regime does not have any measurable effect on the relative differences between the developmental rates of the early and the late flies. Taken together these results appear to suggest that pleiotropic effects of clock genes mediate correlated changes in the timing of adult emergence and the rate of pre-adult development in D. melanogaster

    Capturing human activity spaces: New geometries

    Get PDF
    Activity space, defined as “the local areas within which people move or travel during the course of their activities during a specified time period”, is a measure of an individual’s spatial behavior which captures individual and environmental differences and offers an alternative approach to studying the spatial reach of travelers. The shape and area of activity space is a product of how it is conceptualized and measured. This paper enlarges the set of geometries which can be used to describe activity space. It tests four parametric geometries (ellipse, superellipse, Cassini oval, and bean curve), which are identified as those capturing a specific share of all locations visited, i.e. 95%, while minimizing the area covered. They are estimated for a number of long-duration data sets while distinguishing between trip purposes. We present both a flexible, easily adaptable method for calculating activity spaces of different shapes and a qualitative comparison of the four above-mentioned shape types on the basis of the given surveys. We can thus demonstrate that the choice of an appropriate shape representing an individual’s activity space is highly dependent on the spatial distributions and frequencies of the locations visited by the person in the given time period
    corecore