14 research outputs found

    Existence of a Tribo-Modified Surface Layer on SBR Elastomers: Balance Between Formation and Wear of the Modified Layer

    Get PDF
    In most of the tribological contacts, the composition and tribological properties of the original interface will change during use. The tribo-films, with modified properties compared to the bulk, are dynamic structures that play a significant role in friction. The existence of a tribo-modified surface layer and its importance on the overall friction of elastomers has been shown both theoretically and experimentally before. The characteristics of the modified surface layer deserve specific attention since the tribological properties of elastomers in contact with a rough counter-surface are determined by these modified surfaces together with the properties of bulk of the material. Both the formation of the modified layer and the break down (wear) of it are of importance in determining the existence and thickness of the tribo-modified layer. In this study, the importance of the wear is emphasized by comparing two styrene butadiene rubber-based elastomers in contact with a granite sphere. A current status of perception of the removal and the stability of the modified surface layers on rubbers is introduced as well as experimental work related to this matter and discussion within literature. Pin-on-disk friction tests are performed on two SBR-based samples in contact with a granite sphere under controlled environmental conditions to form the modified surface layer. Although the hysteresis part of the friction force which has a minor contribution in the overall friction is not markedly different, the total measured friction coefficient differs significantly. Mechanical changes both inside and outside the wear track are determined by atomic force microscope nano-indentations at different timescales to examine the modified surface layer on the test samples. The specific wear rates of the two tribo-systems are compared, and the existence of the modified surface layer, the different measured friction coefficient and the running-in distances toward steady-state friction are explained considering different wear rates. A conceptual model is presented, correlating the energy input into the tribo-system and the existence of a modified surface layer

    THE EFFECTS OF PLASMA SPRAY PARAMETERS ON THE MICROSTRUCTURE AND PHASE COMPOSITION OF THERMAL BARRIER COATINGS MADE BY SPPS PROCESS

    No full text
    In this paper the effect of plasma spray parameters, atomizing gas and substrate preheat temperature on microstructure and phase composition of YSZ coatings produced by SPPS process have been investigated. The experimental results showed that increasing the power of plasma, using hydrogen as the precursor atomizing gas and increasing substrate preheat temperature decrease the amount of non-pyrolyzed precursor in the coatings. At low plasma power most of the deposited precursor is in non-pyrolyzed state, and consequently the applied coatings are defective. The increase in substrate temperature beyond 800oC either by preheating or heat transfer from plasma torch to the substrate, prevent the coating formation. In SPPS coating formation, up to a special spray distance the optical microscopy image of the coatings showed a snowy like appearance. XRD analysis showed that in this situation the amount of un-pyrolyzed precursor is low. Beyond this spray distance, spherical particles, are obtained and XRD analysis showed that most of the precursor is in un-pyrolyzed state

    THE FEASIBILITY STUDY OF W-Cu COMPOSITE PRODUCTION BY SUBMICRON PARTICLES ADDITION AND INFILTRATION

    No full text
    In this paper the feasibility of fabricating controlled porous skeleton of pure tungsten at low temperature by addition of submicron particles to tungsten powder (surface activated sintering) has been studied and the best parameters for subsequent infiltration of Cu were acquired. The effects of addition of submicron particles and sintering temperature on porous as well as infiltrated samples were studied. The samples were examined by scanning electron microscopy (SEM), Vickers hardness measurements and tensile test. The composites made have been investigated and revealed the making W-Cu composite with good density, penetrability, hardness and microstructure. Consequently, the sintering temperature was reduced considerably (Ts≤1650oC) and a homogeneous porous tungsten was obtained. Also, composite prepared by this method exhibited elongation about 28% that is much more than conventional W-15%wt Cu composites. This method of production for W–Cu composites has not been reported elsewher

    Numerical method for the adhesive normal contact analysis based on a Dugdale approximation

    Get PDF
    Modeling adhesion between two contacting surfaces plays a vital role in nano-tribology. However, providing analytical models, although desirable, is mostly impossible, in particular for complex geometries. Therefore, much attention has to be paid to numerical modeling of this phenomenon. Based on the adhesive stress description of the Maugis-Dugdale model of adhesion, which is credible over a broad range of engineering applications, an extended Conjugate Gradient Method (CGM) has been developed for adhesive contact problems. To examine the accuracy of the proposed method, the common case of the adhesive contact of a rigid sphere on an elastic half-space is investigated. To further evaluate the accuracy of this method, the adhesive contact of a rigid sphere over a wavy elastic half-space is also studied for different combinations of the amplitude and wavelength. There is good agreement between the analytical solution and the values predicted by the proposed method in the force-approach curves. Moreover, the calculation of pull-off force at a bisinusoidal interface between two surfaces is carried out for various cases to study the effects of different influential parameters including work of adhesion, elastic modulus, radius curvature at a crest, and the wavelength ratio. A curve is fitted on the calculated pull-off force in order to express it as an analytical relation. Similar to the JKR and DMT expressions for the pull-off force of a rigid ball on an elastic half-plane, the fitted curve is not affected by the elastic modulus and is linearly dependent on the radius of curvature and the work of adhesion. In addition, a power law governs the relation between pull-off force and the wavelength ratio. In the end, it is shown that roughness can either increase or decrease the adhesive force at a rough interface depending on the degree of the roughness

    Measurement of chemical and geometrical surface changes in a wear track by a confocal height sensor and confocal Raman spectroscopy

    Get PDF
    Geometrical and chemical changes in the wear track can cause a drift in friction level. In this paper, chemical and geometrical surface changes in wear tracks are analyzed. For this, a setup with a confocal height sensor was developed to measure the local height changes on the wear track, combined with confocal Raman spectroscopy to determine the chemical changes at the surfaces. Pin-on-disc experiments were performed at room temperature and at elevated temperature (600 °C) to understand the material behavior between mild and severe wear regimes. The wear tracks developing between the two ceramics, alumina (Al2O3) and zirconia (Y-TZP), were analyzed using these techniques. The results of confocal height sensor showed significantly more geometrical changes in surface roughness at 600 °C compared to the test conducted at room temperature. The developed roughness in the wear track was approximately 250 times larger at 600 °C due to the higher degradation of the mechanical properties of ceramic. Further, material transfer was observed for the test conducted at 600 °C using Raman Spectroscopy. Material transfer at room temperature is difficult to observe because surface changes are less evident in mild wear regimes. The results show that the changes in the micro-geometry of the surface and the chemical compositions of the surface influence the friction level and wear processes. The confocal height sensor and Raman Spectroscopy were used to measure and understand the geometrical and chemical changes occurring on the surface of a wear track during sliding in a single setu
    corecore