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A B S T R A C T

Modeling adhesion between two contacting surfaces plays a vital role in nano-tribology. However, providing
analytical models, although desirable, is mostly impossible, in particular for complex geometries. Therefore,
much attention has to be paid to numerical modeling of this phenomenon. Based on the adhesive stress
description of the Maugis-Dugdale model of adhesion, which is credible over a broad range of engineering
applications, an extended Conjugate Gradient Method (CGM) has been developed for adhesive contact
problems. To examine the accuracy of the proposed method, the common case of the adhesive contact of a
rigid sphere on an elastic half-space is investigated. To further evaluate the accuracy of this method, the
adhesive contact of a rigid sphere over a wavy elastic half-space is also studied for different combinations of the
amplitude and wavelength. There is good agreement between the analytical solution and the values predicted by
the proposed method in the force-approach curves. Moreover, the calculation of pull-off force at a bisinusoidal
interface between two surfaces is carried out for various cases to study the effects of different influential
parameters including work of adhesion, elastic modulus, radius curvature at a crest, and the wavelength ratio. A
curve is fitted on the calculated pull-off force in order to express it as an analytical relation. Similar to the JKR
and DMT expressions for the pull-off force of a rigid ball on an elastic half-plane, the fitted curve is not affected
by the elastic modulus and is linearly dependent on the radius of curvature and the work of adhesion. In
addition, a power law governs the relation between pull-off force and the wavelength ratio. In the end, it is
shown that roughness can either increase or decrease the adhesive force at a rough interface depending on the
degree of the roughness.

1. Introduction

Adhesion plays a significant role in several technological fields and
serves as one of the main reliability issues while dealing with smooth
surfaces in contact under relatively low normal loads such as the case of
micro/nano devices [1,2]. The early research on adhesion in contact
mechanics was done by Bradley who studied the adhesive contact of
rigid spheres [3]. Later on, two opposing classical theories of adhesion,
JKR [4], and DMT [5], for single spherical elastic contacts were
presented. Although these two models take different approaches and
make significantly different assumptions, they are both true. It was
shown by Tabor that these two models are the two opposite extreme
limits of a single theory characterized by the Tabor parameter [6]:
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where R Δγ E z, , *, 0 are the radius of the sphere, work of adhesion, the
effective elastic modulus, and the equilibrium separation, ranging from
0.2 nm to 0.4 nm. The JKR model is valid for large values of the Tabor
parameter, as in the case of large and compliant contacts. The DMT
model, however, is suitable for low values of this parameter, as for
small and stiff contacts. Following these two models, Muller et al.
developed a numerical solution to the adhesion interaction by integrat-
ing the Lennard-Jones potential and characterized the transition from
DMT to JKR by adjusting the Tabor parameter [7]. Subsequently,
Maugis provided a solution to this contact problem through assuming
the contribution of adhesion inside and outside the contact area, by
means of a Dugdale approximation and is known as Maugis-Dugdale
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(MD) model [8]. He defined an adhesive parameter which is equivalent
to the Tabor parameter as:
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in which σ0 is the maximum attractive pressure of the Lennard-Jones
potential. Based on the MD model, Johnson and Greenwood con-
structed an adhesion map for the contact of elastic spheres [9,10].

Although the mentioned analytical models provide exact solutions
to the adhesion problem, they are limited to simple and smooth
geometries. Thus, researchers have resorted to numerical approaches
for surfaces with a more complex geometry [11–13]. Several authors
have attempted to numerically evaluate the adhesion between two
rough surfaces through multi-asperity and finite element approaches.
In multi-asperity models, the surface is described merely in terms of
the summit geometry and the rest of the surface is discarded [14–16].
As the main limitation of this model, next to the simplified summit
geometry, is the assumption of a Gaussian distribution of roughness
height, which is not valid for many engineering applications, different
height distributions have been implemented, all of which still have the
limitation to a specific application [16–19]. Finite element models for
adhesive contact problems, incorporating the Lennard-Jones potential
into the framework of nonlinear continuum mechanics, have also been
developed [20,21].

The roughness of a surface could be described by means of surface
models, such as fractals and Fourier transforms [22–25]. In these
cases, numerical simulation of an adhesive contact has been considered
while taking into account the regenerated topography of the contacting
surfaces and not the original topography as it is measured. Here, the
measured topography of a surface can be different from the roughness
details regenerated or approximated by stochastic parameters.
Consequently, since the adhesion force is a function of the exact local
distance between the asperities of the two contacting surfaces, chan-
ging this distance influences the corresponding local adhesive force,
and thus, deviation in the adhesive behavior is expected. Therefore, the
core purpose of the current study is to develop a numerical adhesive
contact solver between two elastic surfaces without any assumption on
or restriction to the topography of the surfaces. Restricting ourselves to
this goal, the Conjugate Gradient Method (CGM) is considered. CGM is
a fast and accurate numerical algorithm typically implemented for a
system of linear equations and is often used in an iterative scheme [26].
Polonsky and Keer first implemented this method for non-adhesive
normal contact problems [27]. Ever since, this method has been
extensively exploited for various non-adhesive contact problems in
order to determine the normal and tangential contact stresses and
contact area [28–33].

In the present study, the CGM is extended to include a Dugdale
approximation, similar to MD model of adhesion, for the adhesive
stress. In this way, it is used for the adhesive contact analysis between
two elastic bodies with a general complex surface geometry.

2. Adhesive parameters

Maugis represented the surface force in terms of a Dugdale cohesive
zone and stated that adhesion is present up to a specific value of the
separation between the two contacting bodies, named h0. Within this
separation, the attractive pressure of σ0, is applied such that [8]
(Fig. 1):

Δγ σ h= 0 0 (3)

This results in h z z= 9 3 /16 = 0.9740 0 0. Based on the definition of
the MD model, the pressure inside the contact region is the super-
position of the positive Hertzian pressure of radius a and the negative
adhesive pressure. Outside the contact region, the attractive pressure is
constant over a ring of inner and outer radii of a and c, in which:

⎧⎨⎩φ at r a
h at r c= 0 =

=0 (4)

where φ is the separation. The Dugdale stress, σ− 0, and the maximum
separation, h0, are the two adhesive parameters that will be used in the
proposed algorithm for the adhesive normal contact between two
bodies.

3. Problem definition

When two rough surfaces are brought into contact, the generated
normal stress (pressure) deforms the surfaces. The composite deforma-
tion of the two surfaces, u x y( , ) due to the applied pressure,P x y( , ) over
the region Ω is given by:

∫u x y k x ζ y η P ζ η dζdη( , ) = ( − , − ) ( , )
Ω (5)

where x and y are the spatial coordinates and k x y( , ) is the Boussinesq
kernel function and is expressed as [34]:
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in which E ν i, , = 1, 2i i are the elastic moduli and Poisson ratios of the
two contacting surfaces. If the separation between these two surfaces
before and after the deformation are denoted by h x y( , ) and g x y( , ), they
can be related to the deformation u x y( , ) as:

g x y u x y h x y δ( , ) = ( , ) + ( , ) − (7)

where δ is the rigid approach of the two surfaces (Fig. 2). The non-
adhesive contact problem necessitates the pressure to be positive at
contacting areas, where there is no separation between the two surfaces
(where g x y( , ) = 0). On the other hand, at separate areas (where
g x y( , ) > 0), the pressure must be zero. Moreover, the pressure
distribution must balance the applied normal load, F0. In other words:

∫

P x y at g x y
P x y at g x y

P x y dx dy F

( , ) > 0 ( , ) = 0
( , ) = 0 ( , ) > 0

( , ) =
Ω

0
(8)

The adhesive contact problem is, nevertheless, different from the
definition by Eq. (8). For an adhesive contact problem, there is a
negative stress between separated areas described by the Lennard-
Jones potential as an explicit function of the local separation. As stated
in the previous section, the MD model of adhesion assumes this
dependence to be a step function of the local separation (by means of
a Dugdale approximation of the Lennard-Jones expression). Based on
this description, the negative stress due to adhesion at separated areas

Fig. 1. Dugdale approximation (red line) of Lennard-Jones potential (blue line). (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article).
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is a constant value ( σ− 0, the Dugdale stress which is the maximum
negative stress of the Lennard-Jones potential) as long as the local
separation does not exceed a specific value (named h0 as defined in the
previous section). At all other separated areas, there is no adhesive
stress. It is also important to note that the pressure may take negative
values at contacting areas but it is never smaller than σ− 0(therefore, the
pressure transition between contacting and separate areas is contin-
uous). This model could be mathematically summarized as:

∫

P x y σ at g x y
P x y σ at g x y h
P x y at g x y h

P x y dx dy F

( , ) > − ( , ) = 0
( , ) = − 0 < ( , ) <
( , ) = 0 ( , ) >

( , ) =
Ω

0

0 0

0

0
(9)

The aim of the current study is to solve Eq. (9) for P x y( , ) at a
general topography between two surfaces provided that the geometry of
the contacting bodies (h x y( , )), the normal load (F0), the mechanical
properties (E and ν), and the work of adhesion (Δγ) are all known.

4. Numerical technique

As it was stated before, providing an analytical solution for the
problem defined in previous section is only limited to simple geome-
tries and therefore, this section aims at developing a numerical
algorithm for more complex geometries.

4.1. Discretization

The first step to numerically solve Eq. (9) is to discretize the
calculation area. Thus, the area Ω is divided into N2 rectangular surface
elements with grid sizes of Δx and Δy. Therefore, one can assume a
piecewise constant function within each surface element for the contact
pressure distribution. The discrete form of the convolution integral of
Eq. (5) is then given by:
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where uij is the surface deformation at node (i j, ), pkl is the uniform
pressure acting upon the element centered at node (k l, ), and Kij are the
influence coefficients, expressed as (xi and yj are the spatial coordinates
of the node (i j, )):
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In practice, the DC-FFT algorithm developed by Liu et al. can be
used to evaluate the linear convolution of Eq. (10), efficiently [35]. If
the FFT of Kij and pij are respectively denoted by K͠ij and p∼ij, the
convolution summation of Eq. (10) is performed as follows:

⎡
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⎤
⎦⎥u IFFT K p i j N= . , , = 1, 2, ... ,͠ ∼

ij ij ij (12)

where IFFT stands for Inverse Fast Fourier Transform. This method
has been used by many authors [32,36,37]. One should, however, note
that the FFT-based convolution leads to periodicity errors which are,
due to the non-periodic nature of the contact problem, more prominent
close to the boundaries of the target area. One approach to minimize
this error is to expand the calculation domain by zero-padding the
applied pressure outside the target area. In the present study, where
needed, the calculation domain is chosen to be 2 times greater than the
target domain (contact domain) [35].

4.2. CGM-based iteration scheme

Due to the fact that the only inputs to the general elastic contact
problem are mechanical properties, normal force, and contacting
surfaces geometry, the aim of the non-adhesive contact problem is to
find the set of grid points pressure, pij which satisfies the Kuhn-Tucker
complementary conditions over the target area Ω:

p g p g i j N≥ 0, ≥ 0, = 0, , = 1, 2, ... ,ij ij ij ij (13)

Various methods have been proposed to solve this nonlinear
optimization problem, among which, Conjugate Gradient Method
(CGM) is regarded as one of the most prominent ones in terms of
simplicity, accuracy, and convergence (readers are referred to [27] for
details). To include the effect of adhesion, the definition of the
mentioned problem, according to the adhesive stress description of
MD model, must change as follows (the problem proposed in Section 3
is here mimicked in the discrete format):

∑ ∑
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The following CGM algorithm is based on the one proposed by
Polonsky and Keer [27]. However, in some steps, changes have been
made to satisfy the conditions imposed by the presence of adhesion
(described by Eq. (14)). The following procedure is an optimization
algorithm to minimize the separation at contact nodes (defined as the
objective function of the problem to be minimized). The whole process,
as will be described, is summarized in Fig. 3 (the mathematical
background of this algorithm is beyond the scope of this study and
the readers are referred to [38] for details). The detailed description of
this algorithm is provided next and is suitable for the readers who wish
to implement it for computer programming.

Step 1. Set the initial pressure and balance the force using the
approach presented in step 6. A constant pressure over the target
area is a suitable initial choice.
Step 2. Initiate the iteration and calculate the deformation, uij by means
of Eq. (12) and set the separation and subtract its mean value as follows:

∑

g u h

g
N

g

g g g

= +

= 1

= −

ij ij ij

c i j I
ij

ij ij

( , ) ∈ c

(15)

Fig. 2. The normal contact between two bodies; undeformed (dash lines) and deformed
(solid lines).
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In the equation above,Nc is the number of nodes in the contact
region,Ic, for which p σ> −ij 0. To exclude the points with zero pressure
but separation greater than h0 from this definition for the contacting
nodes, we later set the pressure at such nodes to a very high negative
value such as σ−1000 0.

As stated by Polonsky and Keer, a precious feature of CG algorithm
is the force balance which obviates the need for including the approach
(also called penetration) between the two surfaces while computing the
surface separation and therefore, enables the problem to be solved
within only one level of iteration [27]. In other words, the approach is
claimed to be g which is updated in each iteration.

Step 3. Compute the new conjugate direction tij as:

⎪
⎪⎧⎨
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t
g δ t i j I

i j I
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G
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c
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∑G g=
i j I

ij
( , ) ∈

2

c (17)

In this algorithm, the subscript “old” refers to the parameter value
at the previous iteration. Therefore, Gold and δ are respectively set to 1
and 0 before the iteration starts.

Step 4. Store the current value of G for the next iteration by setting
G G=old . Then, do the following convolution and subtract the mean
value of rij as follows:

∑

r K t

r
N

r

r r r
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ij
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− , −
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This convolution can be also carried out through Eq. (12). Then,
calculate the step length, τ as:

τ
g t

r t
=

∑

∑
i j I ij ij

i j I ij ij

( , ) ∈

( , ) ∈

c

c (19)

Step 5. Store the current pressure,pij as pijold
to be used in the next

step for error estimation. At this stage, the pressure is updated by
making a step in the direction tij:

p p τt i j I= − , ( , ) ∈ij ij ij c (20)

Next, instead of setting all negative values of pij to zeros, as it is
done for a non-adhesive elastic contact problem, set all p σ< −ij 0 to

σ− 0. Also, nodes with non-positive pressure and separation greater
than h0 must be set to σ−1000 0. Polonsky and Keer defined the overlap
area as the set of all non-contacting nodes (p = 0ij ) at which separation
is negative [27]. However, these nodes are defined here as the ones
with negative pressure and separation:

⎧⎨⎩
⎫⎬⎭I i j p g= ( , ): < 0, < 0ol ij ij (21)

If I = ∅ol , then δ = 1. Otherwise, δ is set to zero and the following
correction at these nodes is performed:

p p τg i j I= − , ( , ) ∈ij ij ij ol (22)

Since τ is always positive, the nodes in overlap area will enter the
contact region by this correction.

Step 6. To balance the force, in the general elastic contact problem,
the total force, F is determined by multiplying the grid area by the
summation of the pressure over the whole area and then, the
pressure at this stage is multiplied by the ratio F F/0 , where F0 is
the external normal load. In the present algorithm, however, we seek
to keep the constant negative pressure, σ− 0 unchanged. Therefore,
before applying the multiplication, the constant value of σ0 is added
to the pressure at nodes with non-zero pressure (shifted to zero) in
order to keep the nodes with the constant negative pressure
unaffected. Finally, the pressure is subtracted by beforehand added
σ0:

⎛
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(23)

where Δx and Δy are the grid element sizes. It can be easily proven that
Eq. (23) balances the force and the force corresponding the updated
pressure distribution is the same as applied external one. Eventually,
the relative error is estimated as:

∑ε Δx Δy p p= −ij ijold (24)

If the relative error is smaller than the specified tolerance, the
iteration stops. Otherwise, another iteration must be performed. It
should be noted that one must set all pressures less than σ− 0 to zero
before calculating the deformation in step 2 and relative error in step 6.
In the end, it is very important to note that since the CGM algorithm is
based on minimizing the local separation at contact points as the

Fig. 3. Numerical algorithm, the extended CGM.
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residual, it is not necessary to check whether this local separation is
zero when the convergence is reached.

In the present algorithm, the contribution of each element in the
pressure distribution and deformation is considered separately and
thus, there is no assumption in terms of the geometry. Therefore, this
algorithm can be utilized at any geometry between two contacting
bodies.

5. Numerical examples

In this section, to demonstrate the accuracy of the proposed
method, two cases, for which the analytical solutions are available in
the literature, will be numerically investigated. First, the well-known
case of the adhesive contact of a rigid sphere and a flat elastic half-
space will be studied. And second, the contact of a rigid sphere over a
wavy half-space will be investigated. Inserting the normal force and the
geometry of the contacting surfaces into the algorithm, it is expected to
predict the true contact pressure and radius and then other required
outputs. For the first case, the problem reduces to original MDmodel of
adhesion for a ball-on-flat contact.

5.1. Adhesive contact of a rigid sphere over a flat elastic half-space

In this section, the ball-on-flat contact will be numerically analyzed
and the results including the contact pressure, contact radius, and the
imposed approach of the two bodies are compared to their analytical
counterparts provided in [39]. The geometry of the sphere, as one of
the inputs to the numerical algorithm, is estimated to be a parabola (as
long as r R< < ) as:

h r
R

=
2

2

(25)

in which r is the distance from the center on the contact plane and R is
the sphere radius. The other input to the numerical algorithm is the
external normal force. The analytical contact radius corresponding to
this force is then determined. The calculation area is extended to 2
times farther than the analytical contact radius to minimize the
periodicity error to an acceptable level (as described in [35]). The
whole calculating area is divided into 512 × 512 uniform square
elements for this example. The parameter values are chosen as
E ν R mm= 73 GPa, = 0.17, = 2.5 . Fig. 4(a) depicts the normal force
vs. contact radius for various values of λ within the boundaries of JKR
and DMT theories. Based on the nature of adhesion, when the normal
force continuously goes down toward zero, the contact radius decreases
as well, up to the point at which this force reaches zero. At this point, in
contrast to the Hertzian contact model, the contact radius is non-zero.
Following this trend (as shown in Fig. 4), applying a negative (pulling)
force decreases the contact radius up to the complete separation of the
contacting bodies. The (pulling) force required to separate the two
bodies is named “pull-off” force. Further, the separation will be called
jump-off since at this certain point, the molecular links between the
surfaces of the bodies are abruptly broken (while the contact radius is
still greater than zero). The reverse phenomenon, which is named
jump-in and is literally unstable, occurs when the two bodies approach
one another and at a certain separation, they jump into contact. As it is
shown in Fig. 4(a), the proposed numerical approach is capable of
tracking the contact behavior from a comparatively high applied force
to jump-off point. However, due to its unstable nature of the contact
under such conditions, this algorithm does not give a solution at the
areas specified by arrows, which can be expected. This instability may
also be interpreted through contact radius. It is apparent in Fig. 4(a)
that for every negative force, there are two corresponding contact radii
and only is the greater one stable due to its lower level of potential.

The other parameter to be evaluated is the approach. In [39], an

analytical expression for this parameter as a function of contact radius
was presented. Fig. 4(b) displays this relation for various values of λ. It
is apparent that there is good agreement between the analytical curve
and the values predicted by the numerical algorithm.

5.2. Adhesive contact of a rigid sphere over a wavy elastic half-space

In the following, the adhesive contact of a rigid sphere over a wavy
elastic half-space is briefly investigated and the present numerical
algorithm is employed to predict the analytical expressions provided
for this problem. Fig. 5 depicts the geometry of the contact of a rigid
sphere and a wavy elastic half-space. The total separation between
these two surfaces is given by:

⎛
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⎞
⎠⎟h r r

R
A πr

ξ
( ) =

2
+ 1 − cos 22

(26)

where r R ξ A, , , are the distance from the center of contact, the radius
of sphere, the wavelength and the amplitude of the wavy surface,
respectively. The governing equation to find the cohesive zone m, based
on MD model of adhesion, is as follows [40]:
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The dimensionless normal force and approach are expressed as:
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where,P a( )1 , the Hertzian contribution in normal force, is given by:

⎡
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⎛
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In Eqs. (27), (29) and (30), Hi is the Struve function of order i (the
Struve functions are the solutions of the non-homogeneous Bessel's
differential equation) and the following dimensionless have been
employed:

P P
π ΔγR

β ξ E
π ΔγR

a a
ξ

Δ ΔR
ξ

α AR
ξ

= ,

=
*

2
,

= ,

= ,

=

3

2

2

2 (31)

Eqs. (27)–(31) fully describe the MD adhesive contact problem
between a rigid sphere and a wavy elastic half-space. Having in hand
the external normal force, one must solve Eqs. (27) and (28) for m and
a , then, Eq. (29) is used to compute the normal approach (for more
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details refer to [40]).
To examine the accuracy of the present numerical algorithm, the

external normal force and the geometrical characteristics of this type of
contact are inserted into it and it is expected to predict the contact
radius and approach given by the analytical expressions of Eqs. (27)–
(30). The numerical values for parameters in this problem are
considered the same as those of Section 5.1. The wavelength of the
wavy surface is also chosen to be μm0.8 . Fig. 6 shows the variation of
normal force with approach for different values of λ for three different
geometries of the wavy surface, specified by α = 0.1,α = 0.2, and
α = 0.3. As it can be seen in this figure, there is good agreement

between the analytical solution and results by the numerical algorithm.
Again, for every negative force, similar to the case of the ball-on-flat
contact, theoretically, there are more than one corresponding ap-
proaches, only one of which is physically stable and the numerical
algorithm can only capture this stable state. This behavior is observable
in Fig. 6 through a number of jumps in each curve. This phenomenon,
which causes energy dissipation and toughening of the contact inter-
face, indicates that models which assume reversible approach and
separation processes neglect a principal mechanism for interface
toughening [40].

6. Pull-off force of a bisinusoidal interface

One of the simplest analytical representations for topography
between two rough surfaces is the bisinusoidal profile which expresses
a mono-modal distribution of asperities with two crossing rough waves.
This combined interface could be created when one of the contacting
surfaces is flat and the other one has a bisinusoidal roughness. For
those tribological applications in which adhesion needs to be taken into
account, providing a precise modeling is crucial. For detachment
process, specifically, it is highly required to have an estimation of the
pulling force needed to detach the contacting surfaces. This section
aims at proposing an analytical expression for the pull-off force at a
bisinusoidal interface as a function of mechanical and geometrical
properties of the contacting bodies. This aim will be achieved through

Fig. 4. (a) Variation of contact radius with normal force, (b) Variation of normal force with approach, for different values of λ. Solid lines and dots are respectively due to the MD model
and (current) numerical expressions for pressure.

Fig. 5. Schematic representation of the contact of a rigid sphere over a wavy elastic half-
space.
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Fig. 6. Variation of normal force with approach for different values of λ in the contact of a sphere over a wavy surface, (a)α = 0.1, (b)α = 0.2, (c)α = 0.3. Solid lines and dots are
respectively due to the M and (current) numerical expressions for pressure.
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fitting a curve on the calculated pull-off forces by means of the
developed numerical algorithm.

6.1. Geometry of a bisinusoidal interface

A typical bisinusoidal profile, with wavelengths λx and λy in x and y
directions and amplitude S, is depicted in Fig. 7. It is worth noting that
while adhering to the counter surface, the area in contact will be an
ellipse whose dimensions are related to the wavelengths λx and λy(See
[41] for more details).

The height of this profile is described as:
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It must be noted that since this profile is originally periodic, there is
no need to expand the computation domain before using DFT. The
effective radius of curvature of this profile is also expressed as:

R R R=c x y (33)

where Rx and Ry are the radii of curvature in x and y directions,
respectively and are obtained through the second derivative of the
surface profile as [34]:

R
λ
π S

R
λ

π S
=

4
, =

4x
x

y
y

2

2

2

2 (34)

The wavelength ratio is also defined as:
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y x

(35)

Fig. 7. A typical bisinusoidal profile.

Table 1
Parameter values for the calculation of pull-off force at a bisinusoidal interface, S nm= 5 .

Parameter Values

W (mJ) 30, 40, 50, 60, 70
R (μm) 100, 200, 300, 400, 500
E* (GPa) 80, 90, 100, 110, 120
k 0.1, 0.3, 0.5, 0.7, 0.9

Table 2
Identified values for the unknown constants of Eq. (36) through Genetic Algorithm
optimization algorithm.

Parameter β a b

value 0.0 10.390 0.041

Fig. 8. Contact pressure for a smooth and rough ball of different roughness rms on a smooth flat at the same normal load for μ = 2.
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6.2. Analysis

The pull-off condition that is dealt with in this section assumes the
contact to be only at the crests. To include any possible effect of the
mechanical and geometrical parameters on the pull-off force, various
values are chosen for the work of adhesion, elastic modulus, radius of
curvature at a crest, and the wavelength ratio. These values are
presented in Table 1. It is very important to note that S, Rc, and k
fully define a unique bisinusoidal interface geometry. Each of the
parameters in Table 1 takes 5 different values. Therefore, there are
5 = 6254 different combinations of these parameters. One should, of
course, note that the Tabor parameter for any of these combinations is
within the MD boundaries. By means of the proposed numerical
algorithm, the pull off force is calculated through generating the
force-approach curve and finding the largest negative force on the
curve for all these combinations.

6.3. Curve fitting on the pull-off force results

For the mentioned 625 different combinations of mechanical and
geometrical parameters, presented in Table 1, the pull-off force at the
bisinusoidal interface is calculated. At this stage, we aim at fitting a
curve on these calculated values to express the pull-off force at such an
interface as an explicit function of the mentioned parameters. The
general form of the curve is chosen to be:

f aE R Δγ k= *
pull off

β
c

β β b
−

1+ 1−
(36)

where a b β, , are unknown constants to be identified. The powers of
E R Δγ*, ,c terms are expressed as functions of β in such a way to keep
the physical dimension in both sides the same, i.e. Newton. Through an
optimization algorithm, one can find the optimum set of the mentioned
constants which makes the general function of Eq. (36) fit best to the
calculated pull-off forces. The resulting constants are presented in
Table 2.

Fig. 9. The variation of pull-off force vs the roughness rms.

Fig. 10. The effect of roughness rms on the contact pressure for μ = 2.
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The identified values imply that the pull-off force is not dependent
on the effective elastic modulus of the contacting bodies. In addition,
this pull-off force is linearly dependent on both radius of curvature and
work of adhesion which is identical to the JKR and DMT predictions of
the pull-off force of a rigid ball over an elastic half-space. For the
contact of a sphere of radius R and a half-plane, if we define
F n RΔγ=pull off model− , we will have n π n π= 3 /2 = 4.71, = 2JKR DMT and
n n n< <JKR MD DMT [34]. Similarly, considering the fact that the surface
investigated in this section (Fig. 7) effectively includes 2 crests (1 in the
center and 4 quarters in the corners), the mentioned linearity constant
for a circular area in contact when k = 1, caused at a single crest, is
a/2 = 5.20. Hence, for k = 1 we have n n n< = 5.20 <JKR MD

Bi sinusoidal
DMT

− .
This consistence ascertains the validity of the fitted curve. Further, this
value implies that if this relation is used to estimate the pull-off force in
case of very large or small values of the Tabor parameter (correspond-
ing to the JKR and DMT theories, respectively), the absolute value for
error will be 10.4% and 16.1%, respectively.

7. The roll of roughness in the contact pressure

As stated before, the proposed algorithm does not make any
assumption about how roughness is distributed over the contacting
surfaces. The roughness could be either a measured roughness or a
generated surface texture. The former one is applicable when the
surface roughness is measured, for instance, by an Atomic Force
Microscope (AFM). The latter one could be implemented to design a
surface roughness and study the effects of different roughness para-
meters such as rms, skewness, and kurtosis. In both cases, the
proposed algorithm can be used to study the adhesive behavior. In
this section, we aim at studying the effect of roughness rms on the
adhesive contact between a smooth ball of radius R μm= 100b and a
rough half-space. The method proposed by Hu and Tonder has been
implemented to numerically generate a Gaussian rough surface [42].
The rough profile is first subtracted by its arithmetic average value and
then scaled in the vertical direction to create rough surfaces with
different values of rms and keep the spatial distribution of peaks and
valleys the same [12]. The mentioned subtraction is necessary in order

Fig. 11. The effect of roughness rms on (a) the normalized adhesive force and (b) the area ratio.
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to keep higher order statistical parameters such as skewness and
kurtosis unaffected. This technique enables one to isolate the effect of
varying roughness rms and maintain the same distribution of aspe-
rities, since different distributions of asperities (even with same rms)
lead to different adhesive behaviors.

Fig. 8 depicts the normalized contact pressure at this contact for
different values of the roughness rms at the same normal load and for
Tabor parameter μ = 2. It is well-known that the roughness can reduce
the adhesive force. However, it is apparent that the small amount of
roughness rms can cause a large zone within the macro contact (and
especially close to the contact boundary) to experience a small
separation (smaller than h0), where the adhesive stress is maximum.
As we further increase the roughness rms, the majority of the contact
zone is separated by greater distances (greater than h0), and experi-
ences no adhesive forces. Only local areas surrounding the asperities
with a positive pressure are in the zone for a high adhesive force. This
trend can be realized through the adhesive area and force (Aadhesive and
Fadhesive) in Fig. 8. A similar behavior is observed in Fig. 9 which shows
the variation of pull-off force for this configuration versus roughness
rms for two different values of Tabor parameter. It can be seen that the
pull-off force first increases with the roughness rms and then decreases.

Fig. 10 depicts the effect of roughness rms on the contact pressure
distribution at F μN= 100 . As the rms increases, the positive contact
pressure scales up since the asperities locations remain the same
(unless the increase in the roughness rms makes the asperity separate
from the counter surface and experience a negative or zero stress
depending on the local separation). However, at nodes with a negative
pressure, the pressure scales down to σ− 0 and then disappears as soon
as the local separation exceeds h0.

The effect of roughness rms on the adhesive force normalized by the
total normal force (F μN= 100 ) is shown in Fig. 11(a) for two different
values of the Tabor parameter. Increasing the roughness rms, as
discussed for Fig. 8, first increases and then decreases. Fig. 11(b)
depicts the effect of roughness rms on the area ratio, defined as the
ratio of integral of the area with a negative stress to the contact area. As
the roughness increases, the adhesive area decreases; yet, the decrease
in the contact area is greater which, in total, leads to an increase in this
ratio. It is worth noting that at all rms values, a higher Tabor parameter
predicts a lower area ratio since a higher Tabor parameter corresponds
to a higher work of adhesion and thus a higher contact area, which
leads to a lower area ratio.

8. Conclusion

In this paper, the Conjugate Gradient Method (CGM) was extended
for adhesive contact analyses between two elastic bodies with a general
geometry (either rough or smooth of any shape) based on the
assumptions of the Maugis-Dugdale model of adhesion. The accuracy
of the proposed algorithm was examined through the conventional case
of ball-on-flat adhesive contact and later, the contact of a ball over a
wavy surface. Then, by means of the proposed algorithm, the pull-off
force at a bisinusoidal interface was calculated for various cases of
different geometrical and mechanical properties and a curve as a
function of all these parameters was fitted on the calculated pull-off
forces. The fitted curve showed no dependence on the elastic modulus,
but a linear trend vs. radius of curvature and work of adhesion. In the
end, the contact between a smooth flat and a rough ball was
considered. It was shown that small degrees of roughness can increase
the pull-off force, adhesive force, and area ratio.
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