21,723 research outputs found

    Evaluating single-scale and/or non-planar diagrams by differential equations

    Get PDF
    We apply a recently suggested new strategy to solve differential equations for Feynman integrals. We develop this method further by analyzing asymptotic expansions of the integrals. We argue that this allows the systematic application of the differential equations to single-scale Feynman integrals. Moreover, the information about singular limits significantly simplifies finding boundary constants for the differential equations. To illustrate these points we consider two families of three-loop integrals. The first are form-factor integrals with two external legs on the light cone. We introduce one more scale by taking one more leg off-shell, p22≠0p_2^2\neq 0. We analytically solve the differential equations for the master integrals in a Laurent expansion in dimensional regularization with ϵ=(4−D)/2\epsilon=(4-D)/2. Then we show how to obtain analytic results for the corresponding one-scale integrals in an algebraic way. An essential ingredient of our method is to match solutions of the differential equations in the limit of small p22p_2^2 to our results at p22≠0p_2^2\neq 0 and to identify various terms in these solutions according to expansion by regions. The second family consists of four-point non-planar integrals with all four legs on the light cone. We evaluate, by differential equations, all the master integrals for the so-called K4K_4 graph consisting of four external vertices which are connected with each other by six lines. We show how the boundary constants can be fixed with the help of the knowledge of the singular limits. We present results in terms of harmonic polylogarithms for the corresponding seven master integrals with six propagators in a Laurent expansion in ϵ\epsilon up to weight six.Comment: 27 pages, 2 figure

    Element gain drifts as an imaging dynamic range limitation in PAF-based interferometers

    Full text link
    Interferometry with phased-array feeds (PAFs) presents new calibration challenges in comparison with single-pixel feeds. In particular, temporal instability of the compound beam patterns due to element gain drifts (EGDs) can produce calibration artefacts in interferometric images. To translate imaging dynamic range requirements into PAF hardware and calibration requirements, we must learn to relate EGD levels to imaging artefact levels. We present a MeqTrees-based simulations framework that addresses this problem, and apply it to the APERTIF prototype currently in development for the WSRT.Comment: 4 pages, 3 figures, poster presentation at the XXX URSI General Assembly and Scientific Symposium (Istanbul, Turkey, August 13-20, 2011

    A planar four-loop form factor and cusp anomalous dimension in QCD

    Get PDF
    We compute the fermionic contribution to the photon-quark form factor to four-loop order in QCD in the planar limit in analytic form. From the divergent part of the latter the cusp and collinear anomalous dimensions are extracted. Results are also presented for the finite contribution. We briefly describe our method to compute all planar master integrals at four-loop order.Comment: 19 pages, 3 figures, v2: typo in (2.3) fixed and coefficients in (2.6) corrected; references added and correcte
    • …
    corecore