4,419 research outputs found
Thermonuclear burn-up in deuterated methane
The thermonuclear burn-up of highly compressed deuterated methane CD is
considered in the spherical geometry. The minimal required values of the
burn-up parameter are determined for various
temperatures and densities . It is shown that thermonuclear burn-up
in becomes possible in practice if its initial density exceeds
. Burn-up in CDT methane
requires significantly ( 100 times) lower compressions. The developed
approach can be used in order to compute the critical burn-up parameters in an
arbitrary deuterium containing fuel
On the bound state of the antiproton-deuterium-tritium ion
The properties of the weakly-bound state in the ion
are investigated with the use of the results of highly accurate computations.
The hyperfine structure splitting of this ion is investigated. We also evaluate
the life-time of the ion against the nuclear fusion and
discuss a possibility to evaluate the corresponding annihilation rate(s)
Scattering of Straight Cosmic Strings by Black Holes: Weak Field Approximation
The scattering of a straight, infinitely long string moving with velocity
by a black hole is considered. We analyze the weak-field case, where the impact
parameter () is large, and obtain exact solutions to the equations of
motion. As a result of scattering, the string is displaced in the direction
perpendicular to the velocity by an amount , where . The second
term dominates at low velocities . The late-time
solution is represented by a kink and anti-kink, propagating in opposite
directions at the speed of light, and leaving behind them the string in a new
``phase''. The solutions are applied to the problem of string capture, and are
compared to numerical results.Comment: 19 pages, 5 figure
Merger Transitions in Brane--Black-Hole Systems: Criticality, Scaling, and Self-Similarity
We propose a toy model for study merger transitions in a curved spaceime with
an arbitrary number of dimensions. This model includes a bulk N-dimensional
static spherically symmetric black hole and a test D-dimensional brane
interacting with the black hole. The brane is asymptotically flat and allows
O(D-1) group of symmetry. Such a brane--black-hole (BBH) system has two
different phases. The first one is formed by solutions describing a brane
crossing the horizon of the bulk black hole. In this case the internal induced
geometry of the brane describes D-dimensional black hole. The other phase
consists of solutions for branes which do not intersect the horizon and the
induced geometry does not have a horizon. We study a critical solution at the
threshold of the brane-black-hole formation, and the solutions which are close
to it. In particular, we demonstrate, that there exists a striking similarity
of the merger transition, during which the phase of the BBH-system is changed,
both with the Choptuik critical collapse and with the merger transitions in the
higher dimensional caged black-hole--black-string system.Comment: 9 pages 2 figures; additional remarks and references are added at
Section IX "Discussion
Statistical Mechanics of Charged Black Holes in Induced Einstein-Maxwell Gravity
The statistical origin of the entropy of charged black holes in models of
induced Einstein-Maxwell gravity is investigated. The constituents inducing the
Einstein-Maxwell action are charged and interact with an external gauge
potential. This new feature, however, does not change divergences of the
statistical-mechanical entropy of the constituents near the horizon. It is
demonstrated that the mechanism of generation of the Bekenstein-Hawking entropy
in induced gravity is universal and it is basically the same for charged and
neutral black holes. The concrete computations are carried out for induced
Einstein-Maxwell gravity with a negative cosmological constant in three
space-time dimensions.Comment: 16 pages, latex, no figure
Thorny Spheres and Black Holes with Strings
We consider thorny spheres, that is 2-dimensional compact surfaces which are
everywhere locally isometric to a round sphere except for a finite number
of isolated points where they have conical singularities. We use thorny spheres
to generate, from a spherically symmetric solution of the Einstein equations,
new solutions which describe spacetimes pierced by an arbitrary number of
infinitely thin cosmic strings radially directed. Each string produces an angle
deficit proportional to its tension, while the metric outside the strings is a
locally spherically symmetric solution. We prove that there can be arbitrary
configurations of strings provided that the directions of the strings obey a
certain equilibrium condition. In general this equilibrium condition can be
written as a force-balance equation for string forces defined in a flat 3-space
in which the thorny sphere is isometrically embedded, or as a constraint on the
product of holonomies around strings in an alternative 3-space that is flat
except for the strings. In the case of small string tensions, the constraint
equation has the form of a linear relation between unit vectors directed along
the string axes.Comment: 37 pages, 11 figure
Accretion of non-minimally coupled generalized Chaplygin gas into black holes
The mass evolution of Schwarzschild black holes by the absorption of scalar
fields is investigated in the scenario of the generalized Chaplygin gas (GCG).
The GCG works as a unification picture of dark matter plus dark energy that
naturally accelerates the expansion of the Universe. Through elements of the
quasi-stationary approach, we consider the mass evolution of Schwarzschild
black holes accreted by non-minimally coupled cosmological scalar fields
reproducing the dynamics of the GCG. As a scalar field non-minimally coupled to
the metrics, such an exotic content has been interconnected with accreting
black holes. The black hole increasing masses by the absorption of the gas
reflects some consistence of the accretion mechanism with the hypothesis of the
primordial origin of supermassive black holes. Our results effectively show
that the non-minimal coupling with the GCG dark sector accelerates the
increasing of black hole masses. Meanwhile some exotic features can also be
depicted for specific ranges of the non-minimal coupling in which the GCG
dynamics is substantially modified.Comment: 13 pages, 03 figure
Continuous Self-Similarity Breaking in Critical Collapse
This paper studies near-critical evolution of the spherically symmetric
scalar field configurations close to the continuously self-similar solution.
Using analytic perturbative methods, it is shown that a generic growing
perturbation departs from the critical Roberts solution in a universal way. We
argue that in the course of its evolution, initial continuous self-similarity
of the background is broken into discrete self-similarity with echoing period
, reproducing the symmetries of the critical
Choptuik solution.Comment: RevTeX 3.1, 28 pages, 5 figures; discussion rewritten to clarify
several issue
Gauge field theory for Poincar\'{e}-Weyl group
On the basis of the general principles of a gauge field theory the gauge
theory for the Poincar\'{e}-Weyl group is constructed. It is shown that tetrads
are not true gauge fields, but represent functions from true gauge fields:
Lorentzian, translational and dilatational ones. The equations of gauge fields
which sources are an energy-momentum tensor, orbital and spin momemta, and also
a dilatational current of an external field are obtained. A new direct
interaction of the Lorentzian gauge field with the orbital momentum of an
external field appears, which describes some new effects. Geometrical
interpretation of the theory is developed and it is shown that as a result of
localization of the Poincar\'{e}-Weyl group spacetime becomes a Weyl-Cartan
space. Also the geometrical interpretation of a dilaton field as a component of
the metric tensor of a tangent space in Weyl-Cartan geometry is proposed.Comment: LaTex, 27 pages, no figure
- …