27 research outputs found

    Spontaneous Symmetry Breaking Facilitates Metal-to-Ligand Charge Transfer: A Quantitative Two-Photon Absorption Study of Ferrocene-phenyleneethynylene Oligomers

    No full text
    Change of the permanent molecular electric dipole moment, Δμ, in a series of nominally centrosymmetric and noncentrosymmteric ferrocene-phenyleneethynylene oligomers was estimated by measuring the two-photon absorption cross-section spectra of the lower energy metal-to-ligand charge-transfer transitions using femtosecond nonlinear transmission method and was found to vary in the range up to 12 D, with the highest value corresponding to the most nonsymmetric system. Calculations of the Δμ performed by the TD-DFT method show quantitative agreement with the experimental values and reveal that facile rotation of the ferrocene moieties relative to the organic ligand breaks the ground-state inversion symmetry in the nominally symmetric structures

    First computational evidence of a competitive stepwise and concerted mechanism for the reduction of antimalarial endoperoxides

    Get PDF
    We study structural analogues of endoperoxides belonging to the family of G factors which present moderate to good antimalarial activity. Their biological activity is related to the reduction and cleavage of the O-O bond. Generally, the O-O bond reduction of model endoperoxides, as well as artemisinin, occurs by a concerted dissociative electron transfer (ET) mechanism. For the G3 and G3Me compounds, the experimental counterpart indicates an unexpected competition between a concerted and a stepwise mechanism, but no intermediate species can be isolated. We thus perform DFT studies on the reduction of G3 and G3Me compounds. We confirm the formation of an intermediate radical anion followed by cleavage of the O-O bond in a second step. We characterize the stable conformations for the radical anions G3 •- and G3Me•- resulting from the ET and the associated reaction pathway. We also calculate the reorganization energy upon ET in relation to the Marcus theory using the DFT method. These results provide valuable insight into understanding the biological activity of G-factor endoperoxides as potential therapeutic antimalarial agents
    corecore