93 research outputs found

    Mitochondrial dysfunction in peripheral blood mononuclear cells in pediatric septic shock

    Get PDF
    OBJECTIVES: Mitochondrial dysfunction in peripheral blood mononuclear cells has been linked to immune dysregulation and organ failure in adult sepsis, but pediatric data are limited. We hypothesized that pediatric septic shock patients exhibit mitochondrial dysfunction within peripheral blood mononuclear cells which in turn correlates with global organ injury. DESIGN: Prospective observational study. SETTING: Academic PICU. PATIENTS: Thirteen pediatric patients with septic shock and greater than or equal to two organ failures and 11 PICU controls without sepsis or organ failure. INTERVENTIONS: Ex vivo measurements of mitochondrial oxygen consumption and membrane potential (DeltaPsim) were performed in intact peripheral blood mononuclear cells on day 1-2 and day 5-7 of septic illness and in controls. The Pediatric Logistic Organ Dysfunction score, inotrope score, and organ failure-free days were determined from medical records. MEASUREMENTS AND MAIN RESULTS: Spare respiratory capacity, an index of bioenergetic reserve, was lower in septic peripheral blood mononuclear cells on day 1-2 (median, 1.81; interquartile range, 0.52-2.09 pmol O2/s/10 cells) compared with controls (5.55; 2.80-7.21; p = 0.03). Spare respiratory capacity normalized by day 5-7. Patients with sepsis on day 1-2 exhibited a higher ratio of LEAK to maximal respiration than controls (17% vs \u3c 1%; p = 0.047) with normalization by day 5-7 (1%; p = 0.008), suggesting mitochondrial uncoupling early in sepsis. However, septic peripheral blood mononuclear cells exhibited no differences in basal or adenosine triphosphate-linked oxygen consumption or DeltaPsim. Oxygen consumption did not correlate with Pediatric Logistic Organ Dysfunction score, inotrope score, or organ failure-free days (all p \u3e 0.05). Although there was a weak overall association between DeltaPsim on day 1-2 and organ failure-free days (Spearman rho = 0.56, p = 0.06), patients with sepsis with normal organ function by day 7 exhibited higher DeltaPsim on day 1-2 compared with patients with organ failure for more than 7 days (p = 0.04). CONCLUSIONS: Mitochondrial dysfunction was present in peripheral blood mononuclear cells in pediatric sepsis, evidenced by decreased bioenergetic reserve and increased uncoupling. Mitochondrial membrane potential, but not respiration, was associated with duration of organ injury

    MCT1 in Invasive Ductal Carcinoma: Monocarboxylate Metabolism and Aggressive Breast Cancer.

    Get PDF
    Introduction: Monocarboxylate transporter 1 (MCT1) is an importer of monocarboxylates such as lactate and pyruvate and a marker of mitochondrial metabolism. MCT1 is highly expressed in a subgroup of cancer cells to allow for catabolite uptake from the tumor microenvironment to support mitochondrial metabolism. We studied the protein expression of MCT1 in a broad group of breast invasive ductal carcinoma specimens to determine its association with breast cancer subtypes and outcomes. Methods: MCT1 expression was evaluated by immunohistochemistry on tissue micro-arrays (TMA) obtained through our tumor bank. Two hundred and fifty-seven cases were analyzed: 180 cases were estrogen receptor and/or progesterone receptor positive (ER+ and/or PR+), 62 cases were human epidermal growth factor receptor 2 positive (HER2+), and 56 cases were triple negative breast cancers (TNBC). MCT1 expression was quantified by digital pathology with Aperio software. The intensity of the staining was measured on a continuous scale (0-black to 255-bright white) using a co-localization algorithm. Statistical analysis was performed using a linear mixed model. Results: High MCT1 expression was more commonly found in TNBC compared to ER+ and/or PR+ and compared to HER-2+ (p \u3c 0.001). Tumors with an in-situ component were less likely to stain strongly for MCT1 (p \u3c 0.05). High nuclear grade was associated with higher MCT1 staining (p \u3c 0.01). Higher T stage tumors were noted to have a higher expression of MCT1 (p \u3c 0.05). High MCT1 staining in cancer cells was associated with shorter progression free survival, increased risk of recurrence, and larger size independent of TNBC status (p \u3c 0.05). Conclusion: MCT1 expression, which is a marker of high catabolite uptake and mitochondrial metabolism, is associated with recurrence in breast invasive ductal carcinoma. MCT1 expression as quantified with digital image analysis may be useful as a prognostic biomarker and to design clinical trials using MCT1 inhibitors

    TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer.

    Get PDF
    A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer

    Stromal Monocarboxylate Transporter MCT4 is a Poor Prognostic Factor in Squamous Cell Carcinoma

    Get PDF
    ABSTRACT Introduction: Monocarboxylate transporter 4 (MCT4) is the main exporter of lactate out of cells. It is also a critical component in the glycolytic metabolism of cancer cells. In this study, stromal MCT4 in oral SCC was correlated with risk of recurrence (ROR), extent of primary tumor (pT) and nodal metastasis (pN), perineural invasion (PNI), lymphovascular invasion (LVI), HPV status, extracapsular extension (ECE) and positive margin. Methods: Clinical data were collected for 86 consecutive patients with oral HNSCC. Tissue microarrays (TMA) were constructed from paraffin blocks of resection specimens and stained for MCT4. Immunohistochemistry (IHC) staining was assessed and quantified by digital image analysis with Aperio software. Using a co-localization algorithm we assessed the intensity of staining and the percentage of positive cells in the tumoral stromal cells. Correlations of MCT4 expression with clinicopathological features and survival were studied. Results: Increased IHC staining for MCT4 was strongly associated with an increased risk of recurrence, OR 1.96 (95%CI: 1.17-3.40), presence of PNI, OR 2.25 (95%CI: 1.33-3.95), higher pT, OR 1.68 (95%CI: 0.99-2.89), higher pN, OR 2.07 (95%CI: 1.25-3.57) and presence of LVI, OR 2.21 (95%CI: 1.11-4.67). We didn’t find any significant association between stromal MCT4 expression and HPV status, presence of ECE or positive margin. Conclusions: This study demonstrates that MCT4, a marker of glycolysis in cancer-associated stroma, is highly expressed in oral SCC. The IHC staining pattern of stromal MCT4 suggests that high MCT4 expression appears to be a useful marker for tumor progression and prognosis. We propose MCT4 serves as a new prognostic factor in oral SCC and can act as a potential therapeutic target marker considering pharmacological development of MCT4 inhibitors

    NUT Midline Carcinoma in a Pregnant Woman

    Get PDF
    NUT midline carcinoma is a rare, highly aggressive tumor that involves midline structures, particularly in the head, neck and mediastinum. It is characterized by NUT gene translocations on chromosome 15. It typically impacts teenagers or young adults, and has a fulminant course leading to death in less than a year in most cases despite aggressive chemoradiotherapy. Due to its location, this tumor is frequently considered inoperable. We present a case of a sinonasal NUT midline carcinoma with orbital invasion discovered during the workup of sinusitis in a young, pregnant woman. The tumor was managed with definitive excision to negative margins followed by aggressive chemoradiation, with no evidence of recurrence for 12 months. We propose that diagnosis of NUT midline carcinoma should prompt recognition of the limitations of current medical therapy and rapid surgical intervention should be undertaken when possible

    Predictive Capacity of Immune-Related Adverse Events and Cytokine Profiling in Neoadjuvant Immune Checkpoint Inhibitor Trials for Head and Neck Squamous Cell Carcinoma\

    Get PDF
    OBJECTIVES: Certain low-level immune-related adverse events (irAEs) have been associated with survival benefits in patients with various solid tumors on immune checkpoint inhibitors (ICIs). We aimed to investigate the association between irAEs and response to neoadjuvant ICIs in patients with head and neck squamous cell carcinoma (HNSCC) and to identify differences in circulating cytokine levels based on irAE status. METHODS: This was a retrospective cohort study including three neoadjuvant clinical trials from July 2017 to January 2022: NCT03238365 (nivolumab ± tadalafil), NCT03854032 (nivolumab ± BMS986205), NCT03618654 (durvalumab ± metformin). The presence and type of irAEs, pathologic treatment response, and survival were compared. Canonical linear discriminant analysis (LDA) was performed to identify combinations of circulating cytokines predictive of irAEs using plasma sample multiplex assay. RESULTS: Of 113 participants meeting inclusion criteria, 32 (28.3%) developed irAEs during treatment or follow-up. Positive p16 status was associated with irAEs (odds ratio [OR] 2.489; 95% CI 1.069-6.119; p = 0.043). irAEs were associated with pathologic treatment response (OR 3.73; 95% CI 1.34-10.35; p = 0.011) and with higher OS in the combined cohort (HR 0.319; 95% CI 0.113-0.906; p = 0.032). Patients with irAEs within the nivolumab cohort had significant elevations of select cytokines pre-treatment. Canonical LDA identified key drivers of irAEs among all trials, which were highly predictive of future irAE status. CONCLUSIONS: irAEs are associated with response to neoadjuvant ICI therapy in HNSCC and can serve as clinical indicators for improved clinical outcomes. irAEs can be predicted by concentrations of several circulating cytokines prior to treatment

    Elevated APOBEC mutational signatures implicate chronic injury in etiology of an aggressive head-and-neck squamous cell carcinoma: a case report.

    Get PDF
    BACKGROUND: Aggressive squamous cell carcinomas (SCCs) present frequently in the context of chronic skin injury occurring in patients with the congenital blistering disease recessive dystrophic epidermolysis bullosa. Recently, these cancers were shown to harbor mutation signatures associated with endogenous deaminases of the active polynucleotide cytosine deaminase family, collectively termed APOBEC, and clock-like COSMIC [Catalogue of Somatic Mutations in Cancer] signatures, which are associated with normal aging and might result from cumulative DNA replication errors. We present a case of a nasal septal SCC arising in the context of recurrent injury, but also modest past tobacco use. Our genetic analysis of this tumor reveals unusually high APOBEC and clock-like but low tobacco-related COSMIC signatures, suggesting that chronic injury may have played a primary role in somatic mutation. This case report demonstrates how signature-based analyses may implicate key roles for certain mutagenic forces in individual malignancies such as head-and-neck SCC, with multiple etiological origins. CASE PRESENTATION: We report the case of a 43-year-old male former smoker who presented with congestion and swelling following a traumatic nasal fracture. During surgery, the mucosa surrounding the right nasal valve appeared abnormal, and biopsies revealed invasive keratinizing SCC. Frozen section biopsies revealed multiple areas to be positive for SCC. Gene sequencing showed loss of PTEN (exons 2-8), CDKN2A/B and TP53 (exons 8-9), MYC amplification, and BLM S338*. Exome sequencing data also revealed that 36% of mutations matched an APOBEC mutational signature (COSMIC signatures 2 and 13) and 53% of mutations matched the clock-like mutation signature (COSMIC signature 5). These proportions place this tumor in the 90th percentile bearing each signature, independently, in a reference data set combining cutaneous and The Cancer Genome Atlas (TCGA) head and neck SCC data. In contrast, few mutations harbored a tobacco-related COSMIC signature 4, representing about the 10th percentile in our reference SCC data set. The patient was treated with partial rhinectomy with local flap reconstruction, bilateral neck dissection, and adjuvant radiation therapy; the patient remains disease-free to date. CONCLUSION: Based on comparative mutational signature analysis, we propose that the history of tobacco use and traumatic injury may have collaborated in activating APOBEC enzymes and the clock-like mutational process, ultimately leading to cancer formation. Clinical awareness of the relationship between epithelial injury and tumorigenesis should enhance earlier detection of this particularly aggressive type of cancer

    The human channel gating–modifying A749G CACNA1D (Cav1.3) variant induces a neurodevelopmental syndrome–like phenotype in mice

    Get PDF
    Germline de novo missense variants of the CACNA1D gene, encoding the pore-forming α1 subunit of Cav1.3 L-type Ca2+ channels (LTCCs), have been found in patients with neurodevelopmental and endocrine dysfunction, but their disease-causing potential is unproven. These variants alter channel gating, enabling enhanced Cav1.3 activity, suggesting Cav1.3 inhibition as a potential therapeutic option. Here we provide proof of the disease-causing nature of such gating-modifying CACNA1D variants using mice (Cav1.3AG) containing the A749G variant reported de novo in a patient with autism spectrum disorder (ASD) and intellectual impairment. In heterozygous mutants, native LTCC currents in adrenal chromaffin cells exhibited gating changes as predicted from heterologous expression. The A749G mutation induced aberrant excitability of dorsomedial striatum–projecting substantia nigra dopamine neurons and medium spiny neurons in the dorsal striatum. The phenotype observed in heterozygous mutants reproduced many of the abnormalities described within the human disease spectrum, including developmental delay, social deficit, and pronounced hyperactivity without major changes in gross neuroanatomy. Despite an approximately 7-fold higher sensitivity of A749G-containing channels to the LTCC inhibitor isradipine, oral pretreatment over 2 days did not rescue the hyperlocomotion. Cav1.3AG mice confirm the pathogenicity of the A749G variant and point toward a pathogenetic role of altered signaling in the dopamine midbrain system

    TP53-inducible Glycolysis and Apoptosis Regulator (TIGAR) Metabolically Reprograms Carcinoma and Stromal Cells in Breast Cancer

    Get PDF
    A subgroup of breast cancers has several metabolic compartments. The mechanisms by which metabolic compartmentalization develop in tumors are poorly characterized. TP53 inducible glycolysis and apoptosis regulator (TIGAR) is a bisphosphatase that reduces glycolysis and is highly expressed in carcinoma cells in the majority of human breast cancers. Hence we set out to determine the effects of TIGAR expression on breast carcinoma and fibroblast glycolytic phenotype and tumor growth. The overexpression of this bisphosphatase in carcinoma cells induces expression of enzymes and transporters involved in the catabolism of lactate and glutamine. Carcinoma cells overexpressing TIGAR have higher oxygen consumption rates and ATP levels when exposed to glutamine, lactate, or the combination of glutamine and lactate. Coculture of TIGAR overexpressing carcinoma cells and fibroblasts compared with control cocultures induce more pronounced glycolytic differences between carcinoma and fibroblast cells. Carcinoma cells overexpressing TIGAR have reduced glucose uptake and lactate production. Conversely, fibroblasts in coculture with TIGAR overexpressing carcinoma cells induce HIF (hypoxia-inducible factor) activation with increased glucose uptake, increased 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3), and lactate dehydrogenase-A expression. We also studied the effect of this enzyme on tumor growth. TIGAR overexpression in carcinoma cells increases tumor growth in vivo with increased proliferation rates. However, a catalytically inactive variant of TIGAR did not induce tumor growth. Therefore, TIGAR expression in breast carcinoma cells promotes metabolic compartmentalization and tumor growth with a mitochondrial metabolic phenotype with lactate and glutamine catabolism. Targeting TIGAR warrants consideration as a potential therapy for breast cancer

    The priming effect of extracellular UTP on human neutrophils: Role of calcium released from thapsigargin-sensitive intracellular stores

    Get PDF
    P2Y2 receptors, which are equally responsive to ATP and UTP, can trigger intracellular signaling events, such as intracellular calcium mobilization and mitogen-activated protein (MAP) kinase phosphorylation in polymorphonuclear leukocytes (PMN). Moreover, extracellular nucleotides have been shown to prime chemoattractant-induced superoxide production. The aim of our study was to investigate the mechanism responsible for the priming effect of extracellular nucleotides on reactive oxygen species (ROS) production induced in human neutrophils by two different chemoattractants: formyl-methionyl-leucyl-phenylalanine (fMLP) and interleukin-8 (IL-8). Nucleotide-induced priming of ROS production was concentration- and time-dependent. When UTP was added to neutrophil suspensions prior to chemoattractant, the increase of the response reached the maximum at 1 min of pre-incubation with the nucleotide. UTP potentiated the phosphorylation of p44/42 and p38 MAP kinases induced by chemoattractants, however the P2 receptor-mediated potentiation of ROS production was still detectable in the presence of a SB203580 or U0126, supporting the view that MAP kinases do not play a major role in regulating the nucleotide-induced effect. In the presence of thapsigargin, an inhibitor of the ubiquitous sarco-endoplasmic reticulum Ca2+-ATPases in mammalian cells, the effect of fMLP was not affected, but UTP-induced priming was abolished, suggesting that the release of calcium from thapsigargin-sensitive intracellular stores is essential for nucleotide-induced priming in human neutrophils
    • …
    corecore