1,318 research outputs found

    The Generation of Turbulence by Oscillating Structures in Superfluid Helium at Very Low Temperatures

    Full text link
    The paper is concerned with the interpretation of many experiments that have been reported recently on the production of quantum turbulence by oscillating spheres, wires and grids in both 4He and 3He-B at temperatures so low that there is a negligible fraction of normal fluid. The experimental results are compared with those obtained in analogous experiments with classical fluids and with preliminary simulations of the quantum turbulence. Particular attention is paid to observed values of drag coefficients and to the very different critical velocities observed in 4He and 3He. It is tentatively concluded that in the case of 4He behaviour may well be similar to that observed in the classical analogues, with relatively small changes when the characteristic size of the oscillating structure is not large compared with the quantized vortex spacing, but that in the case of 3He behaviour is very different and due perhaps to very rapid intrinsic nucleation of the quantized vortices.Comment: 13 pages, 9 figure

    Aharonov-Bohm Effect at liquid-nitrogen temperature: Frohlich superconducting quantum device

    Get PDF
    The Aharonov-Bohm (AB) effect has been accepted and has promoted interdisciplinary scientific activities in modern physics. To observe the AB effect in condensed matter physics, the whole system needs to maintain phase coherence, in a tiny ring of the diameter 1 micrometer and at low temperatures below 1 K. We report that AB oscillations have been measured at high temperature 79 K by use of charge-density wave (CDW) loops in TaS3 ring crystals. CDW condensate maintained macroscopic quantum coherence, which extended over the ring circumference 85 micrometer. The periodicity of the oscillations is h/2e in accuracy within a 10 percent range. The observation of the CDW AB effect implies Frohlich superconductivity in terms of macroscopic coherence and will provide a novel quantum interference device running at room temperature.Comment: 11 pages, 4 figure

    Dynamics of fine particles due to quantized vortices on the surface of superfluid 4^4He

    Full text link
    Peculiar dynamics of a free surface of the superfluid 4He has been observed experimentally with a newly established technique utilizing a number of electrically charged fine metal particles trapped electrically at the surface by Moroshkin et al. They have reported that some portion of the particles exhibit some irregular motions and suggested the existence of quantized vortices interacting with the metal particles. We have conducted calculations with the vortex filament model, which turns out to support the idea of the vortex-particle interactions. The observed anomalous metal particle motions are roughly categorized into two types; (1) circular motions with specific frequencies, and (2) quasi-linear oscillations. The former ones seem to be explained once we consider a vertical vortex filament whose edges are terminated at the bottom and at a particle trapped at the surface. Although it is not yet clear whether all the anomalous motions are due to the quantum vortices, the vortices seem to play important roles for the motions.Comment: 7 pages, 10 figure

    Dynamics of the vortex-particle complexes bound to the free surface of superfluid helium

    Get PDF
    We present an experimental and theoretical study of the 2D dynamics of electrically charged nanoparticles trapped under a free surface of superfluid helium in a static vertical electric field. We focus on the dynamics of particles driven by the interaction with quantized vortices terminating at the free surface. We identify two types of particle trajectories and the associated vortex structures: vertical linear vortices pinned at the bottom of the container and half-ring vortices travelling along the free surface of the liquid

    Dynamics of vortex tangle without mutual friction in superfluid 4^4He

    Full text link
    A recent experiment has shown that a tangle of quantized vortices in superfluid 4^4He decayed even at mK temperatures where the normal fluid was negligible and no mutual friction worked. Motivated by this experiment, this work studies numerically the dynamics of the vortex tangle without the mutual friction, thus showing that a self-similar cascade process, whereby large vortex loops break up to smaller ones, proceeds in the vortex tangle and is closely related with its free decay. This cascade process which may be covered with the mutual friction at higher temperatures is just the one at zero temperature Feynman proposed long ago. The full Biot-Savart calculation is made for dilute vortices, while the localized induction approximation is used for a dense tangle. The former finds the elementary scenario: the reconnection of the vortices excites vortex waves along them and makes them kinked, which could be suppressed if the mutual friction worked. The kinked parts reconnect with the vortex they belong to, dividing into small loops. The latter simulation under the localized induction approximation shows that such cascade process actually proceeds self-similarly in a dense tangle and continues to make small vortices. Considering that the vortices of the interatomic size no longer keep the picture of vortex, the cascade process leads to the decay of the vortex line density. The presence of the cascade process is supported also by investigating the classification of the reconnection type and the size distribution of vortices. The decay of the vortex line density is consistent with the solution of the Vinen's equation which was originally derived on the basis of the idea of homogeneous turbulence with the cascade process. The obtained result is compared with the recent Vinen's theory.Comment: 16 pages, 16 figures, submitted to PR

    Instability of vortex array and transitions to turbulent states in rotating helium II

    Full text link
    We consider superfluid helium inside a container which rotates at constant angular velocity and investigate numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow. This problem was studied experimentally by Swanson {\it et al.}, who reported evidence of instabilities at increasing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex reconnections take place and the vortex array is destabilized. The eventual nonlinear saturation of the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed results compare well with the experiments. Finally we suggest a theoretical explanation for the second instability which was observed at higher values of the axial flow
    corecore