439 research outputs found

    Working Effectively with Persons Who Are Hard of Hearing, Late-Deafened, or Deaf

    Get PDF
    This brochure on persons who are hard of hearing, late-deafened, or deaf and the Americans with Disability Act (ADA) is one of a series on human resources practices and workplace accommodations for persons with disabilities edited by Susanne M. Bruyère, Ph.D., CRC, SPHR, Director, Program on Employment and Disability, School of Industrial and Labor Relations – Extension Division, Cornell University. Cornell University was funded in the early 1990’s by the U.S. Department of Education National Institute on Disability and Rehabilitation Research as a National Materials Development Project on the employment provisions (Title I) of the ADA (Grant #H133D10155). These updates, and the development of new brochures, have been funded by Cornell’s Program on Employment and Disability, the Pacific Disability and Business Technical Assistance Center, and other supporters

    Structures of smooth muscle myosin and heavy meromyosin in the folded, shutdown state

    Get PDF
    Remodelling of the contractile apparatus within smooth muscle cells is an essential process that allows effective contractile activity over a wide range of cell lengths. The thick filaments may be redistributed via depolymerisation into inactive myosin monomers that have been detected in vitro, in which the long tail has a folded conformation. The structure of this folded molecule has been controversial. Using negative stain electron microscopy of individual folded molecules from turkey gizzard we show they are more compact than previously described, with heads and the three segments of the folded tail closely packed. Smooth muscle heavy meromyosin (HMM), which lacks two-thirds of the tail, closely resembles the equivalent parts of whole myosin. Image processing reveals a characteristic head region morphology for both HMM and myosin whose features are identifiable by comparison with less compact molecules. The two heads associate asymmetrically: the tip of one motor domain touches the base of the other, resembling the blocked and free heads of this HMM when it forms 2-D crystals on lipid. The tail of HMM lies between the heads, contacting the blocked motor domain, unlike in the 2-D crystal. The tail of the intact myosin is bent sharply and consistently at two positions close to residues 1175 and 1535. The first bend position correlates with a skip in the coiled coil sequence, the second does not. The first segment runs between the heads from the head-tail junction. Unexpectedly, the other segments associate only with the blocked head rather than both heads, such that the second bend lies at a specific position near the C-lobe of the blocked head regulatory light chain. Quantitative analysis of tail flexibility shows that the single coiled coil of HMM has an apparent Young’s modulus of about 0.5 GPa. The folded tail of the intact molecule is less flexible indicating interactions between the segments. The folded tail does not modify the compact head arrangement but stabilises it, indicating a structural mechanism for the very low ATPase activity of the folded molecule

    Hand anthropometry in patients with carpal tunnel syndrome: a case-control study with a matched control group of healthy volunteers

    Get PDF
    Background: The aim of this study was to perform anthropometrical measure- ments of patients’ hands with carpal tunnel syndrome (CTS) in order to evaluate if there is a correlation between CTS occurrence and hand features regarding sexual dimorphism, age and physical activity.  Materials and methods: Study sample consisted of 48 patients (33 females) and control group included 80 healthy volunteers (58 females) with no history of CTS. The following measurements were performed: the wrist circumference, length of the hand, the hand’s width, width of the wrist, thickness of the wrist, height of the hypothenar and thenar, length of the arm and forearm, circumference of the proximal phalanges and width of the digits; as well as several indexes were calculated i.e.: body mass index (BMI), shape index, digit index, wrist index, hand length/height ratio (HLH-ratio) and hand length/upper limb length ratio (HLULL-ratio).  Results: Correlation coincidences were analysed between circumferences within the hand, palm and body weight. All parameters except fingers were correlated with body weight in either gender in both groups (p < 0.05; r = 0.40–0.80); Furthermore, width of the hand was correlated with body height (p < 0.001; r = 0.56–0.71). Mean values of wrist index for CTS patients were: males: 0.8, females: 0.74 (significantly higher than in healthy individuals and indicating square shape); shape index: males 76.5, females 75.8; digit index: males 55.7, females 56.5. The calculated HLH-ratio in CTS group was: males 10.6, females 10.9; HLULL-ratio: males 23.6, females 24.9 and they did not differ significantly from healthy volunteers. Almost 90.0% of females with diagnosed CTS have BMI > 25.0 kg/m2.  Conclusions: There are significant differences in morphometrical features of the upper limbs between CTS patients and healthy individuals. Hands of patients with CTS are more massive and with ‘plumb’ fingers and square shape of the wrist. Furthermore, higher BMI values were confirmed to be predisposing factors in CTS occurrence.

    Magnetoelectric fractals, Magnetoelectric parametric resonance and Hopf bifurcation

    Full text link
    In the present work, we study the dynamics of a magnetic nanoparticle coupled through the magnetoelectric coupling to the ferroelectric crystal. The model of our interest is nonlinear, and we explore the problem under different limits of weak and strong linearity. By applying two electric fields with different frequencies, we control the form of the confinement potential of the ferroelectric subsystem and realize different types of dynamics. We proved that the system is more sensitive to magnetoelectric coupling in the case of double-well potential. In particular, in the case of strong nonlinearity, arbitrary small values of magnetoelectric coupling lead to chaotic dynamics. In essence, magnetoelectric coupling plays a role akin to the small perturbations destroying invariant tors according to the KAM theorem. We showed that bifurcations in the system are of Hopf's type. We observed the formation of magnetoelectric fractals in the system. In the limit of weak nonlinearity, we studied a problem of parametric nonlinear resonance and enhancement of magnetic oscillations through magnetoelectric coupling

    Filamentous smooth muscle myosin is regulated by phosphorylation.

    Full text link

    Myosin V: regulation by calcium, calmodulin, and the tail domain

    Get PDF
    Calcium activates the ATPase activity of tissue-purified myosin V, but not that of shorter expressed constructs. Here, we resolve this discrepancy by comparing an expressed full-length myosin V (dFull) to three shorter constructs. Only dFull has low ATPase activity in EGTA, and significantly higher activity in calcium. Based on hydrodynamic data and electron microscopic images, the inhibited state is due to a compact conformation that is possible only with the whole molecule. The paradoxical finding that dFull moved actin in EGTA suggests that binding of the molecule to the substratum turns it on, perhaps mimicking cargo activation. Calcium slows, but does not stop the rate of actin movement if excess calmodulin (CaM) is present. Without excess CaM, calcium binding to the high affinity sites dissociates CaM and stops motility. We propose that a folded-to-extended conformational change that is controlled by calcium and CaM, and probably by cargo binding itself, regulates myosin V's ability to transport cargo in the cell
    • …
    corecore