19 research outputs found

    A controversy re-visited: Is the coccinellid Adalia bipunctata adversely affected by Bt toxins?

    Get PDF
    Background In 2008/2009, Schmidt and colleagues published a study reporting lethal effects of the microbial Bt toxins Cry1Ab and Cry3Bb on the coccinellid biological control organisms Adalia bipunctata. Based on this study, in concert with over 30 other publications, Mon810 cultivation was banned in Germany in 2009. This triggered two commentaries and one experimental study all published in the journal 'Transgenic Research' that question the scientific basis of the German ban or claim to disprove the adverse effects of the Bt toxins on A. bipunctata reported by Schmidt and colleagues, respectively. This study was undertaken to investigate the underlying reasons for the different outcomes and rebuts the criticism voiced by the two other commentaries. Results It could be demonstrated that the failure to detect an adverse effect by Alvarez-Alfageme and colleagues is based on the use of a significantly different testing protocol. While Schmidt and colleagues exposed and fed larvae of A. bipunctata continuously, Alvarez-Alfageme and colleagues applied an exposure/recovery protocol. When this exposure/recovery protocol was applied to a highly sensitive target insect, Ostrinia nubilalis, the lethal effect was either significantly reduced or disappeared altogether. When repeating the feeding experiments with the Bt toxin Cry1Ab using a combined protocol of both previous studies, again, a lethal effect on A. bipunctata larvae was observed. ELISA tests with Bt-toxin fed larvae and pupae confirmed ingestion of the toxin. Conclusions The new data corroborates earlier findings that Cry1Ab toxin increases mortality in A. bipunctata larvae. It was also shown that the different applied testing protocols explained the contrasting results.ISSN:2190-4715ISSN:2190-470

    Adaptation of Poa alpina to altitude and land use in the Swiss Alps

    Get PDF
    Current land use and climate change are prompting questions about the ability of plants to adapt to such environmental change. Therefore, we experimentally addressed plant performance and quantitative-genetic diversity of the common Alpine Meadow Grass Poa alpina. We asked how land use and altitude affect the occurrence of P. alpina in the field and whether its common-garden performance suggests adaptation to conditions at plant origin and differences in quantitative genetic diversity among plant origins. Among 216 candidate grassland sites of different land use and altitude from 12 villages in the Swiss Alps, P. alpina occurred preferentially in fertilized and grazed sites and at higher elevations. In a common garden at 1,500 m asl, we grew two plants of >600 genotypes representing 78 grassland sites. After 2 years, nearly 90% of all plants had reproduced. In agreement with adaptive advantages of vegetative reproduction at higher altitudes, only 23% of reproductive plants from lower altitudes reproduced via vegetative bulbils, but 55% of plants from higher altitudes. In agreement with adaptive advantages of reproduction in grazed sites, allocation to reproductive biomass was higher in plants from grazed grasslands than from mown ones. For 53 grasslands, we also investigated broad-sense heritability H2, which was significant for all studied traits and twice as high for grazed as for mown grasslands. Moreover, possibly associated with their higher landscape diversity, H2 was higher for sites of villages of Romanic cultural tradition than for those of Germanic and Walser traditions. We suggest promoting diverse land use regimes to conserve not only landscape and plant species diversity, but also adaptive genetic differentiation and heritable genetic variation

    Flowering phenology and reproductive fitness along a mountain slope: maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides

    No full text
    In many biomes, global warming has resulted in advanced and longer growing seasons, which has often led to earlier flowering in plant taxa. Elevational gradients are ideal to study the effects of global warming as they allow transplantation of plants from their original cooler higher elevations down to elevations with a prospective climate. We transplanted plants from ten populations of the European alpine monocarpic herb species Campanula thyrsoides L. to three sites along a steep mountain slope (600, 1,235 and 1,850 m above sea level) in the Swiss Alps and asked whether reproductive phenology adjusts plastically to elevation and if these responses were adaptive, i.e. increased the fitness of plants. We further assessed current genetic differentiation in phenotypic traits and whether any such origin effects were due to adaptation to climatic conditions of origin. Our results showed that transplantation to lower elevations caused strong shifts in phenology, with plants starting growth and flowering earlier than plants placed at higher elevations. However, compared to flower production at high elevation, number of flowers per plant decreased 21 % at mid- and 61 % at low elevation. The shift in phenology thus came with a high cost in fitness, and we suggest that phenology is maladaptive when C. thyrsoides faces temperature conditions deviating from its natural amplitude. We conclude that the frequently reported phenological shift in plant species as a response to global warming may include heavy fitness costs that may hamper species survival
    corecore