766 research outputs found

    Very Strong TeV Emission as Gamma-Ray Burst Afterglows

    Get PDF
    Gamma-ray bursts (GRBs) and following afterglows are considered to be produced by dissipation of kinetic energy of a relativistic fireball and radiation process is widely believed as synchrotron radiation or inverse Compton scattering of electrons. We argue that the transfer of kinetic energy of ejecta into electrons may be inefficient process and hence the total energy released by a GRB event is much larger than that emitted in soft gamma-rays, by a factor of \sim (m_p/m_e). We show that, in this case, very strong emission of TeV gamma-rays is possible due to synchrotron radiation of protons accelerated up to \sim 10^{21} eV, which are trapped in the magnetic field of afterglow shock and radiate their energy on an observational time scale of \sim day. This suggests a possibility that GRBs are most energetic in TeV range and such TeV gamma-rays may be detectable from GRBs even at cosmological distances, i.e., z \sim 1, by currently working ground-based telescopes. Furthermore, this model gives a quantitative explanation for the famous long-duration GeV photons detected from GRB940217. If TeV gamma-ray emission which is much more energetic than GRB photons is detected, it provides a strong evidence for acceleration of protons up to \sim 10^{21} eV.Comment: 10 pages, no figure. To appear in ApJ Letter

    TeV Burst of Gamma-Ray Bursts and Ultra High Energy Cosmic Rays

    Full text link
    Some recent experiments detecting very high energy (VHE) gamma-rays above 10-20 TeV independently reported VHE bursts for some of bright gamma-ray bursts (GRBs). If these signals are truly from GRBs, these GRBs must emit a much larger amount of energy as VHE gamma-rays than in the ordinary photon energy range of GRBs (keV-MeV). We show that such extreme phenomena can be reasonably explained by synchrotron radiation of protons accelerated to \sim 10^{20-21} eV, which has been predicted by Totani (1998a). Protons seem to carry about (m_p/m_e) times larger energy than electrons, and hence the total energy liberated by one GRB becomes as large as \sim 10^{56} (\Delta \Omega / 4 \pi) ergs. Therefore a strong beaming of GRB emission is highly likely. Extension of the VHE spectrum beyond 20 TeV gives a nearly model-independent lower limit of the Lorentz factor of GRBs, as \gamma \gtilde 500. Furthermore, our model gives the correct energy range and time variability of ordinary keV-MeV gamma-rays of GRBs by synchrotron radiation of electrons. Therefore the VHE bursts of GRBs strongly support the hypothesis that ultra high energy cosmic rays observed on the Earth are produced by GRBs.Comment: Final version to appear in ApJ Lett. Emphasizing that the extremely large energy required in this model is not theoretically impossible if GRB emission is strongly beamed. References update

    Search for H₃⁺ isotopologues toward CRL 2136 IRS 1

    Get PDF
    Context. Deuterated interstellar molecules frequently have abundances relative to their main isotopologues much higher than the overall elemental D-to-H ratio in the cold dense interstellar medium. H₃⁺ and its isotopologues play a key role in the deuterium fractionation; however, the abundances of these isotopologues have not been measured empirically with respect to H₃⁺ to date. Aims. Our aim was to constrain the relative abundances of H₂D⁺ and D₃⁺ in the cold outer envelope of the hot core CRL 2136 IRS 1. Methods. We carried out three observations targeting H₃⁺ and its isotopologues using the spectrographs CRIRES at the VLT, iSHELL at IRTF, and EXES on board SOFIA. In addition, the CO overtone band at 2.3 μm was observed by iSHELL to characterize the gas on the line of sight. Results. The H₃⁺ ion was detected toward CRL 2136 IRS 1 as in previous observations. Spectroscopy of lines of H₂D⁺ and D₃⁺ resulted in non-detections. The 3σ upper limits of N(H₂D⁺)/N(H₃⁺) and N(D₃⁺)/N(H₃⁺) are 0.24 and 0.13, respectively. The population diagram for CO is reproduced by two components of warm gas with the temperatures 58 and 530 K, assuming a local thermodynamic equilibrium (LTE) distribution of the rotational levels. Cold gas (<20 K) makes only a minor contribution to the CO molecular column toward CRL 2136 IRS 1. Conclusions. The critical conditions for deuterium fractionation in a dense cloud are low temperature and CO depletion. Given the revised cloud properties, it is no surprise that H₃⁺ isotopologues are not detected toward CRL 2136 IRS 1. The result is consistent with our current understanding of how deuterium fractionation proceeds

    Nuclear pasta structures and the charge screening effect

    Full text link
    Non uniform structures of the nucleon matter at subnuclear densities are numerically studied by means of the density functional theory with relativistic mean-fields coupled with the electric field. A particular role of the charge screening effects is demonstrated.Comment: 11 pages, 9 figures, submitted to PR

    Does the Number Density of Elliptical Galaxies Change at z<1?

    Full text link
    We have performed a detailed V/Vmax test for a sample of the Canada-France Redshift Survey (CFRS) for the purpose of examining whether the comoving number density of field galaxies changes significantly at redshifts of z<1. Taking into account the luminosity evolution of galaxies which depends on their morphological type through different history of star formation, we obtain \sim 0.5 in the range of 0.3<z<0.8, where reliable redshifts were secured by spectroscopy of either absorption or emission lines for the CFRS sample. This indicates that a picture of mild evolution of field galaxies without significant mergers is consistent with the CFRS data. Early-type galaxies, selected by their (V-I)_{AB} color, become unnaturally deficient in number at z>0.8 due to the selection bias, thereby causing a fictitious decrease of . We therefore conclude that a reasonable choice of upper bound of redshift z \sim 0.8 in the V/Vmax test saves the picture of passive evolution for field ellipticals in the CFRS sample, which was rejected by Kauffman, Charlot, & White (1996) without confining the redshift range. However, about 10% of the CFRS sample consists of galaxies having colors much bluer than predicted for irregular galaxies, and their \avmax is significantly larger than 0.5. We discuss this population of extremely blue galaxies in terms of starburst that has just turned on at their observed redshifts.Comment: 11 pages including 3 figures, to appear in ApJ Letter

    Anachronistic Grain Growth and Global Structure of the Protoplanetary Disk Associated with the Mature Classical T Tauri Star, PDS 66

    Get PDF
    We present ATCA interferometric observations of the old (13 Myr), nearby (86pc) classical T Tauri star, PDS 66. Unresolved 3 and 12 mm continuum emission is detected towards PDS 66, and upper limits are derived for the 3 and 6 cm flux densities. The mm-wave data show a spectral slope flatter than that expected for ISM-sized dust particles, which is evidence of grain growth. We also present HST/NICMOS 1.1 micron PSF-subtracted coronagraphic imaging of PDS 66. The HST observations reveal a bilaterally symmetric circumstellar region of dust scattering about 0.32% of the central starlight, declining radially in surface brightness. The light-scattering disk of material is inclined 32 degrees from face-on, and extends to a radius of 170 AU. These data are combined with published optical and longer wavelength observations to make qualitative comparisons between the median Taurus and PDS 66 spectral energy distributions (SEDs). By comparing the near-infrared emission to a simple model, we determine that the location of the inner disk radius is consistent with the dust sublimation radius (1400 K at 0.1 AU). We place constraints on the total disk mass using a flat-disk model and find that it is probably too low to form gas giant planets according to current models. Despite the fact that PDS 66 is much older than a typical classical T Tauri star (< 5 Myr), its physical properties are not much different.Comment: 31 pages, 7 figure

    Phosphotyrosine recognition domains: The typical, the atypical and the versatile

    Get PDF
    SH2 domains are long known prominent players in the field of phosphotyrosine recognition within signaling protein networks. However, over the years they have been joined by an increasing number of other protein domain families that can, at least with some of their members, also recognise pTyr residues in a sequence-specific context. This superfamily of pTyr recognition modules, which includes substantial fractions of the PTB domains, as well as much smaller, or even single member fractions like the HYB domain, the PKC and PKC C2 domains and RKIP, represents a fascinating, medically relevant and hence intensely studied part of the cellular signaling architecture of metazoans. Protein tyrosine phosphorylation clearly serves a plethora of functions and pTyr recognition domains are used in a similarly wide range of interaction modes, which encompass, for example, partner protein switching, tandem recognition functionalities and the interaction with catalytically active protein domains. If looked upon closely enough, virtually no pTyr recognition and regulation event is an exact mirror image of another one in the same cell. Thus, the more we learn about the biology and ultrastructural details of pTyr recognition domains, the more does it become apparent that nature cleverly combines and varies a few basic principles to generate a sheer endless number of sophisticated and highly effective recognition/regulation events that are, under normal conditions, elegantly orchestrated in time and space. This knowledge is also valuable when exploring pTyr reader domains as diagnostic tools, drug targets or therapeutic reagents to combat human diseases. © 2012 Kaneko et al.; licensee BioMed Central Ltd

    Phosphotyrosine recognition domains: the typical, the atypical and the versatile

    Full text link

    Orphan Afterglows of Collimated Gamma-Ray Bursts: Rate Predictions and Prospects for Detection

    Get PDF
    We make a quantitative prediction for the detection rate of orphan GRB afterglows as a function of flux sensitivity in X-ray, optical, and radio wavebands, based on a recent model of collimated GRB afterglows. We find that the orphan afterglow rate strongly depends on the opening angle of the jet (roughly \propto \theta_jet^{-2}), as expected from simple geometrical consideration, if the total jet energy is kept constant as suggested by recent studies. The relative beaming factor b_rel, i.e., the ratio of all afterglow rate including orphans to those associated with observable prompt GRBs, could be as high as b_rel >~ 100 for searches deeper than R ~ 24, depending on afterglow parameters. To make the most plausible predictions, we average the model emission for ten sets of afterglow parameters obtained through fits to ten well-observed, collimated GRB jets, weighted by the sky coverage of each jet. Our model expectations are consistent with the results (or constraints) obtained by all past searches. We estimate the number of orphan afterglows in the first 1500deg^2 field of the SDSS to be about 0.2. The relative beaming factor b_rel is rapidly increasing with the search sensitivity: b_rel ~ 3 for the SDSS sensitivity to transient objects in the northern sky (R ~ 19), ~14 for the past high-z supernova searches (R ~ 23), and ~50 for the sensitivity of the Subaru Suprime-Cam (R ~ 26). Predictions are made for the current facilities and future projects in X-ray, optical, and radio bands. Among them, the southern-sky observation of the SDSS (sensitive to transients down to R ~ 23) could detect ~40 orphan afterglows during the five-year operation. Allen Telescope Array would find about 200 afterglows in a radio band at ~0.1-1mJy with b_rel ~ 15.Comment: Accepted to ApJ after minor changes. The afterglow sample is extended, and the predicted numbers are changed but only slightly. Received Apr 5, Accepted May

    Isolation and immunocharacterization of lactobacillus salivarius from the intestine of wakame-fed pigs to develop novel "Immunosynbiotics"

    Get PDF
    Emerging threats of antimicrobial resistance necessitate the exploration of effective alternatives for healthy livestock growth strategies. ?Immunosynbiotics?, a combination of immunoregulatory probiotics and prebiotics with synergistic effects when used together in feed, would be one of the most promising candidates. Lactobacilli are normal residents of the gastrointestinal tract of pigs, and many of them are able to exert beneficial immunoregulatory properties. On the other hand, wakame (Undaria pinnafida), an edible seaweed, has the potential to be used as an immunoregulatory prebiotic when added to livestock feed. Therefore, in order to develop a novel immunosynbiotic, we isolated and characterized immunoregulatory lactobacilli with the ability to utilize wakame. Following a month-long in vivo wakame feeding trial in 8-week-old Landrace pigs (n = 6), sections of intestinal mucous membrane were processed for bacteriological culture and followed by identification of pure colonies by 16S rRNA sequence. Each isolate was characterized in vitro in terms of their ability to assimilate to the wakame and to differentially modulate the expression of interleukin-6 (IL-6) and interferon beta (IFN-β) in the porcine intestinal epithelial (PIE) cells triggered by Toll-like receptor (TLR)-4 and TLR-3 activation, respectively. We demonstrated that feeding wakame to pigs significantly increased the lactobacilli population in the small intestine. We established a wakame-component adjusted culture media that allowed the isolation and characterization of a total of 128 Lactobacilli salivarius colonies from the gut of wakame-fed pigs. Interestingly, several L. salivarius isolates showed both high wakame assimilation ability and immunomodulatory capacities. Among the wakame assimilating isolates, L. salivarius FFIG71 showed a significantly higher capacity to upregulate the IL-6 expression, and L. salivarius FFIG131 showed significantly higher capacity to upregulate the IFN-β expression; these could be used as immunobiotic strains in combination with wakame for the development of novel immunologically active feeds for pigs.Fil: Masumizu, Yuki. Tohoku University; JapónFil: Zhou, Binghui. Tohoku University; JapónFil: Humayun Kober, AKM. Tohoku University; Japón. Chittagong Veterinary and Animal Sciences University; BangladeshFil: Islam, M. Aminul. Agricultural University; Bangladesh. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Ikeda-Ohtsubo, Wakako. Tohoku University; JapónFil: Suda, Yoshihito. Department Of Food Agriculture, Miyagi University; JapónFil: Albarracín, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; Japón. Universidad Nacional de Tucumán; ArgentinaFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Suzuki, Keiichi. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Kitazawa, Haruki. Tohoku University; Japó
    corecore