6,105 research outputs found

    Fatigue crack propagation in a quasi one-dimensional elasto-plastic model

    Get PDF
    Fatigue crack advance induced by the application of cyclic quasistatic loads is investigated both numerically and analytically using a lattice spring model. The system has a quasi-one-dimensional geometry, and consists in two symmetrical chains that are pulled apart, thus breaking springs which connect them, and producing the advance of a crack. Quasistatic crack advance occurs as a consequence of the plasticity included in the springs which form the chains, and that implies a history dependent stress-strain curve for each spring. The continuous limit of the model allows a detailed analytical treatment that gives physical insight of the propagation mechanism. This simple model captures key features that cause well known phenomenology in fatigue crack propagation, in particular a Paris-like law of crack advance under cyclic loading, and the overload retardation effect.Comment: To be published in the International Journal of Solids and Structure

    Coherence effects in disordered geometries with a field-theory dual

    Full text link
    We investigate the holographic dual of a probe scalar in an asymptotically Anti-de-Sitter (AdS) disordered background which is an exact solution of Einstein's equations in three bulk dimensions. Unlike other approaches to model disorder in holography, we are able to explore quantum wave-like interference effects between an oscillating or random source and the geometry. In the weak-disorder limit, we compute analytically and numerically the one-point correlation function of the dual field theory for different choices of sources and backgrounds. The most interesting feature is the suppression of the one-point function in the presence of an oscillating source and weak random background. We have also computed analytically and numerically the two-point function in the weak disorder limit. We have found that, in general, the perturbative contribution induces an additional power-law decay whose exponent depends on the distribution of disorder. For certain choices of the gravity background, this contribution becomes dominant for large separations which indicates breaking of perturbation theory and the possible existence of a phase transition induced by disorder.Comment: 36 pages, 19 figs, v3 accepted versio

    Methanol dehydration over ZrO2 supported-activated carbons

    Get PDF
    Resumen comunicación congreso internacionalDME is playing an important role due to its potential use as an alternative fuel in diesel engines. The use of this fuel produces lower NOx emissions, and less engine noise compared to traditional diesel fuels. Moreover, this compound is used as building block for many value-added chemicals such as lower olefins. DME is usually produced via catalytic dehydration of methanol over a solid acid. The use of activated carbons in catalytic processes, acting directly as catalyst and as catalyst support, is focussing much attention. They can be obtained from different types of lignocellulosic waste, producing not only an environmental but an economical profit. In this sense, the preparation of activated carbons with phosphoric acid produces catalytic supports with certain surface acidity, which have shown high activity for alcohol dehydration. In this study, ZrO2 supported activated carbons were prepared from an industrial byproduct as lignin for the methanol dehydration to DME. The activated carbon was prepared by chemical activation with H3PO4, using Alcell® lignin as precursor. The impregnation ratio value (H3PO4/lignin) used was 3. The impregnated sample was activated under N2 flow at 500 ºC for 2h, washed and dried. The activated carbon was loaded with different amounts of ZrO(NO3)2, dried at 120ºC for 24h, and calcined in air at 250ºC for 2h, obtaining ZrO2 loadings of 5 and 10%, respectively. For the sake of comparison, pure ZrO2 was also used. Catalytic tests were performed at atmospheric pressure in a fixed bed reactor, at different space times and partial pressures. The activated carbon (ACP) prepared shows a well-developed porous structure, with an apparent surface area higher than 2000 m2/g, and a high contribution of mesoporosity. After metal loading, a maximum decrease of 20% in all structural parameters of the ACP was observed.The results show that ZrO2 loading produces an enhancing in the catalytic activity of the carbon materials compared to the parent activated carbon (0.1 g·s/μmol, PCH3OH= 0.02 atm in helium and 350 ºC). In this sense, a methanol conversion of 25% was observed with the addition of 10% w/w ZrO2 (ACP-10Zr), at steady state conditions (Figure 1). ACP shows negligible conversion, at the same conditions and for pure ZrO2 the methanol conversion was of 10%. Very high selectivity to DME (~100%) was found at temperatures lower than 350 ºC. The methanol conversion increases with temperature, reaching a value of 67% at 475ºC, but a slight decrease in DME selectivity is observed, resulting in a higher production of light hydrocarbons, mainly CH4. The results suggest that the addition of only a 10% of ZrO2 over an activated carbon prepared by chemical activation with H3PO4 enhances significantly the performance of the catalyst, compared to pure ZrO2.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Asymmetric trehalose analogues to probe disaccharide processing pathways in mycobacteria

    Get PDF
    The uptake and metabolism of the disaccharide trehalose by Mycobacterium tuberculosis is essential for the virulence of this pathogen. Here we describe the chemoenzymatic synthesis of new azido-functionalised asymmetric trehalose probes that resist degradation by mycobacterial enzymes and are used to probe trehalose processing pathways in mycobacteria

    Variational Methods in AdS/CFT

    Full text link
    We prove that the AdS/CFT calculation of 1-point functions can be drastically simplified by using variational arguments. We give a simple universal proof, valid for any theory that can be derived from a Lagrangian, that the large radius divergencies in 1-point functions can always be renormalized away (at least in the semiclassical approximation). The renormalized 1-point functions then follow by a simple variational problem involving only finite quantities. Several examples, a massive scalar, gravity, and renormalization flows, are discussed. Our results are general and can thus be used for dualities beyond AdS/CFT.Comment: 14 pages, no figures, LaTeX, minor change in footnot
    corecore