82 research outputs found

    Mesoscopic Fano Effect in a spin splitter with a side-coupled quantum dot

    Get PDF
    Cataloged from PDF version of article.We investigate the interplay between the spin interference and the Fano effect in a three-lead mesoscopic ring with a side-coupled quantum dot (QD). A uniform Rashba spin-orbit coupling and a perpendicular magnetic field are tuned such that the ring operates as a spin splitter in the absence of the QD: one lead is used to inject unpolarized electrons and the remaining (output) leads collect almost polarized spin currents. By applying a gate potential to the quantum dot a pair of spin-split levels sweeps the bias window and leads to Fano interference. The steady-state spin and charge currents in the leads are calculated for a finite bias applied across the ring via the non-equilibrium Green's function formalism. When the QD levels participate to transport we find that the spin currents exhibit peaks and dips whereas the charge currents present Fano lineshapes. The location of the side-coupled quantum dot and the spin splitting of its levels also affect the interference and the output currents. The opposite response of output currents to the variation of the gate potential allows one to use this system as a single parameter current switch. We also analyze the dependence of the splitter efficiency on the spin splitting on the QD. (C) 2012 Elsevier B.V. All rights reserved

    Electronic transmittance phase extracted from mesoscopic interferometers

    Get PDF
    The usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called 'open' interferometer as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open interferometer has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in 'closed' interferometers (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the 'bare' QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a π lapse. Therefore, closed mesoscopic interferometers can be used to address the 'universal phase lapse' problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses. © 2012 Tolea et al
    corecore