1,346 research outputs found

    Transition Phenomena Induced by Internal Noise and Quasi-absorbing State

    Full text link
    We study a simple chemical reaction system and effects of the internal noise. The chemical reaction system causes the same transition phenomenon discussed by Togashi and Kaneko [Phys. Rev. Lett. 86 (2001) 2459; J. Phys. Soc. Jpn. 72 (2003) 62]. By using the simpler model than Togashi-Kaneko's one, we discuss the transition phenomenon by means of a random walk model and an effective model. The discussion makes it clear that quasi-absorbing states, which are produced by the change of the strength of the internal noise, play an important role in the transition phenomenon. Stabilizing the quasi-absorbing states causes bifurcation of the peaks in the stationary probability distribution discontinuously.Comment: 6 pages, 5 figure

    Switching Dynamics in Reaction Networks Induced by Molecular Discreteness

    Get PDF
    To study the fluctuations and dynamics in chemical reaction processes, stochastic differential equations based on the rate equation involving chemical concentrations are often adopted. When the number of molecules is very small, however, the discreteness in the number of molecules cannot be neglected since the number of molecules must be an integer. This discreteness can be important in biochemical reactions, where the total number of molecules is not significantly larger than the number of chemical species. To elucidate the effects of such discreteness, we study autocatalytic reaction systems comprising several chemical species through stochastic particle simulations. The generation of novel states is observed; it is caused by the extinction of some molecular species due to the discreteness in their number. We demonstrate that the reaction dynamics are switched by a single molecule, which leads to the reconstruction of the acting network structure. We also show the strong dependence of the chemical concentrations on the system size, which is caused by transitions to discreteness-induced novel states.Comment: 11 pages, 5 figure

    Bulk and surface-sensitive high-resolution photoemission study of Mott-Hubbard systems SrVO3_3 and CaVO3_3

    Get PDF
    We study the electronic structure of Mott-Hubbard systems SrVO3_{3} and CaVO3_3 with bulk and surface-sensitive high-resolution photoemission spectroscopy (PES), using a VUV laser, synchrotron radiation and a discharge lamp (hνh\nu = 7 - 21 eV). A systematic suppression of the density of states (DOS) within \sim 0.2 eV of the Fermi level (EFE_F) is found on decreasing photon energy i.e. on increasing bulk sensitivity. The coherent band in SrVO3_{3} and CaVO3_3 is shown to consist of surface and bulk derived features, separated in energy. The stronger distortion on surface of CaVO3_{3} compared to SrVO3_{3} leads to higher surface metallicity in the coherent DOS at EFE_F, consistent with recent theory.Comment: 4 pages 5 figures (including 2 auxiliary figures); A complete analysis of the spectra based on the surface and bulk analysis shows in auxiliary figures Fig. A1 and A

    Unbounded autocatalytic growth on diffusive substrate: the extinction transition

    Full text link
    The effect of diffusively correlated spatial fluctuations on the proliferation-extinction transition of autocatalytic agents is investigated numerically. Reactants adaptation to spatio-temporal active regions is shown to lead to proliferation even if the mean field rate equations predict extinction, in agreement with previous theoretical predictions. While in the proliferation phase the system admits a typical time scale that dictates the exponential growth, the extinction times distribution obeys a power law at the parameter region considered

    Image Analysis of Intractable Epilepsy:18F-FDG PET Scan of the Cortical Dysplasia

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付
    corecore