97 research outputs found

    Investigating Performance of High-Rate GNSS-PPP and PPP-AR for Structural Health Monitoring: Dynamic Tests on Shake Table

    Get PDF
    © 2020 American Society of Civil Engineers. This paper investigates the usability of Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) methods, traditional PPP with a float-ambiguity solution and with ambiguity resolution (PPP-AR), in structural health monitoring applications based on experimental tests using a single-axis shake table. To evaluate the performance of the PPP methodologies, harmonic oscillations of the motion table with amplitudes ranging from 5 to 10 mm and frequency between 0.1 and 3 Hz were generated representing a wide range of possible structural motions. In addition, ground motion similar to those experienced during a real earthquake, the 1995 Kobe earthquake, and step motions were generated on the shake table. GNSS PPP-derived positioning results at 20 Hz were compared, in both of the frequency and time domains, with reference data comprising LVDT data and relative positioning data. Results show that both PPP methods' measurements can be used in the computation of harmonic oscillation frequencies compared to the LVDT and relative positioning values. The observed amplitudes of the harmonic oscillations are slightly different from the LVDT values on the order of millimeters. The results of a step motion experiment demonstrated that PPP-AR is better than traditional PPP in exhibiting quasi-static or static displacement. Moreover, the capabilities of traditional PPP and PPP-AR methods are evaluated with respect to the natural frequency of a small-scale structural model excited on the shake table. The frequency spectrum of this small-scale structural model derived from the PPP methods is consistent with finite-element model (FEM)-predicted values and relative positioning. The research presented here demonstrates the potential of the high-rate GNSS PPP and PPP-AR methods to reliably monitor structural and earthquake-induced vibration frequencies and amplitudes for both structural and seismological applications. Specifically, all results reveal that high-rate PPP-AR is more accurate than traditional PPP for both dynamic and static displacement detection

    Repeatability of tensile properties in high pressure die-castings of an Al-Mg-Si-Mn alloy

    Get PDF
    © 2015 The Korean Institute of Metals and Materials and Springer Science+Business Media Dordrecht High pressure die-castings of an Al-Mg-Si-Mn alloy have been assessed in terms of the repeatability of the mechanical properties including yield strength, ultimate tensile strength and elongation by the normal standard deviations method and by the Weibull statistical model with three parameters. It was found that the round samples had the maximum Weibull modulus, indicating the best repeatability. The machined samples exhibited the second best of Weibull modulus. Among the square samples, the 2 mm and 5 mm thick samples had the lowest and the highest Weibull modulus respectively, indicating that the repeatability for the castings was influenced by the wall thickness. The microstructural uniformity and porosity levels are critical factors in determining the repeatability of the high pressure die-castings. A less segregation in the microstructure could uniform the stress distribution in the die-castings and a less porosity in the casting could reduce the sources for brittle fracture. These improved the repeatability in casting production.The authors acknowledge the Engineering and Physical Sciences Research Council (EPSRC), Technology Strategy Board (TSB) and Jaguar Land Rover (JLR) in United Kingdom for financial support
    • …
    corecore