1,830 research outputs found

    Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions

    Get PDF
    The calculation of electronic conductance of nano-scale junctions from first principles is a long standing problem in molecular electronics. Here we demonstrate excellent agreement with experiments for the transport properties of the gold/alkanediamine benchmark system when electron-electron interactions are described using the many-body GW approximation. The main difference from standard density functional theory (DFT) calculations is a significant reduction of the contact conductance, G_c, due an improved alignment of the molecular energy levels with the metal Fermi energy. The molecular orbitals involved in the tunneling process comprise states delocalized over the carbon backbone and states localized on the amine end groups. We find that dynamical screening effects renormalize the two types of states in qualitatively different ways when the molecule is inserted in the junction. Consequently, the GW transport results cannot be mimicked by DFT calculations employing a simple scissors operator.Comment: 7 page

    Image-charge induced localization of molecular orbitals at metal-molecule interfaces: Self-consistent GW calculations

    Get PDF
    Quasiparticle (QP) wave functions, also known as Dyson orbitals, extend the concept of single-particle states to interacting electron systems. Here we employ many-body perturbation theory in the GW approximation to calculate the QP wave functions for a semi-empirical model describing a π\pi-conjugated molecular wire in contact with a metal surface. We find that image charge effects pull the frontier molecular orbitals toward the metal surface while orbitals with higher or lower energy are pushed away. This affects both the size of the energetic image charge shifts and the coupling of the individual orbitals to the metal substrate. Full diagonalization of the QP equation and, to some extent, self-consistency in the GW self-energy, is important to describe the effect which is not captured by standard density functional theory or Hartree-Fock. These results should be important for the understanding and theoretical modeling of electron transport across metal-molecule interfaces.Comment: 7 pages, 6 figure

    Renormalization of Optical Excitations in Molecules near a Metal Surface

    Full text link
    The lowest electronic excitations of benzene and a set of donor-acceptor molecular complexes are calculated for the gas phase and on the Al(111) surface using the many-body Bethe-Salpeter equation (BSE). The energy of the charge-transfer excitations obtained for the gas phase complexes are found to be around 10% lower than the experimental values. When the molecules are placed outside the surface, the enhanced screening from the metal reduces the exciton binding energies by several eVs and the transition energies by up to 1 eV depending on the size of the transition-generated dipole. As a striking consequence we find that close to the metal surface the optical gap of benzene can exceed its quasiparticle gap. A classical image charge model for the screened Coulomb interaction can account for all these effects which, on the other hand, are completely missed by standard time-dependent density functional theory.Comment: 4 pages, 3 figures; revised versio

    Unraveling the acoustic electron-phonon interaction in graphene

    Get PDF
    Using a first-principles approach we calculate the acoustic electron-phonon couplings in graphene for the transverse (TA) and longitudinal (LA) acoustic phonons. Analytic forms of the coupling matrix elements valid in the long-wavelength limit are found to give an almost quantitative description of the first-principles based matrix elements even at shorter wavelengths. Using the analytic forms of the coupling matrix elements, we study the acoustic phonon-limited carrier mobility for temperatures 0-200 K and high carrier densities of 10^{12}-10^{13} cm^{-2}. We find that the intrinsic effective acoustic deformation potential of graphene is \Xi_eff = 6.8 eV and that the temperature dependence of the mobility \mu ~ T^{-\alpha} increases beyond an \alpha = 4 dependence even in the absence of screening when the full coupling matrix elements are considered. The large disagreement between our calculated deformation potential and those extracted from experimental measurements (18-29 eV) indicates that additional or modified acoustic phonon-scattering mechanisms are at play in experimental situations.Comment: 7 pages, 3 figure

    Hybrid Local-Order Mechanism for Inversion Symmetry Breaking

    Get PDF
    Using classical Monte Carlo simulations, we study a simple statistical mechanical model of relevance to the emergence of polarisation from local displacements on the square and cubic lattices. Our model contains two key ingredients: a Kitaev-like orientation-dependent interaction between nearest neighbours, and a steric term that acts between next-nearest neighbours. Taken by themselves, each of these two ingredients is incapable of driving long-range symmetry breaking, despite the presence of a broad feature in the corresponding heat capacity functions. Instead each component results in a "hidden" transition on cooling to a manifold of degenerate states, the two manifolds are different in the sense that they reflect distinct types of local order. Remarkably, their intersection---\emph{i.e.} the ground state when both interaction terms are included in the Hamiltonian---supports a spontaneous polarisation. In this way, our study demonstrates how local ordering mechanisms might be combined to break global inversion symmetry in a manner conceptually similar to that operating in the "hybrid" improper ferroelectrics. We discuss the relevance of our analysis to the emergence of spontaneous polarisation in well-studied ferroelectrics such as BaTiO3_3 and KNbO3_3.Comment: 8 pages, 8 figure

    Graphene on metals: a Van der Waals density functional study

    Full text link
    We use density functional theory (DFT) with a recently developed van der Waals density functional (vdW-DF) to study the adsorption of graphene on Al, Cu, Ag, Au, Pt, Pd, Co and Ni(111) surfaces. In constrast to the local density approximation (LDA) which predicts relatively strong binding for Ni,Co and Pd, the vdW-DF predicts weak binding for all metals and metal-graphene distances in the range 3.40-3.72 \AA. At these distances the graphene bandstructure as calculated with DFT and the many-body G0_0W0_0 method is basically unaffected by the substrate, in particular there is no opening of a band gap at the KK-point.Comment: 4 pages, 3 figure

    Assessment of the fiscal stance appropriate for the euro area in 2019

    Get PDF
    On 18 June 2018, the European Fiscal Board (EFB) has published its assessment of the general orientation of fiscal policy in the euro area. The report concludes that the favourable economic outlook offers a prime opportunity to rebuild fiscal buffers. Especially euro area Member States with a high government debt-to-GDP ratio need to do more than simply accrue the budgetary benefits of the economic expansion. Lest we repeat the mistakes of the past and rob ourselves of room to manoeuvre when the next crisis hits, this is the time to move towards a somewhat restrictive orientation of fiscal policy in the euro area. It is also the time to upgrade the EU's fiscal framework and prepare a capacity for joint stabilisation for the euro area

    Strong plasmon-phonon splitting and hybridization in 2D materials revealed through a self-energy approach

    Get PDF
    We reveal new aspects of the interaction between plasmons and phonons in 2D materials that go beyond a mere shift and increase in plasmon width due to coupling to either intrinsic vibrational modes of the material or phonons in a supporting substrate. More precisely, we predict strong plasmon splitting due to this coupling, resulting in a characteristic avoided crossing scheme. We base our results on a computationally efficient approach consisting in including many-body interactions through the electron self-energy. We specify this formalism for a description of plasmons based upon a tight-binding electron Hamiltonian combined with the random-phase approximation. This approach is accurate provided vertex corrections can be neglected, as is is the case in conventional plasmon-supporting metals and Dirac-fermion systems. We illustrate our method by evaluating plasmonic spectra of doped graphene nanotriangles with varied size, where we predict remarkable peak splittings and other radical modifications in the spectra due to plasmons interactions with intrinsic optical phonons. Our method is equally applicable to other 2D materials and provides a simple approach for investigating coupling of plasmons to phonons, excitons, and other excitations in hybrid thin nanostructures
    • 

    corecore