26 research outputs found

    Functional redundancy of Burkholderia pseudomallei phospholipase C enzymes and their role in virulence

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordPhospholipase C (PLC) enzymes are key virulence factors in several pathogenic bacteria. Burkholderia pseudomallei, the causative agent of melioidosis, possesses at least three plc genes (plc1, plc2 and plc3). We found that in culture medium plc1 gene expression increased with increasing pH, whilst expression of the plc3 gene was pH (4.5 to 9.0) independent. Expression of the plc2 gene was not detected in culture medium. All three plc genes were expressed during macrophage infection by B. pseudomallei K96243. Comparing B. pseudomallei wild-type with plc mutants revealed that plc2, plc12 or plc123 mutants showed reduced intracellular survival in macrophages and reduced plaque formation in HeLa cells. However, plc1 or plc3 mutants showed no significant differences in plaque formation compared to wild-type bacteria. These findings suggest that Plc2, but not Plc1 or Plc3 are required for infection of host cells. In Galleria mellonella, plc1, plc2 or plc3 mutants were not attenuated compared to the wild-type strain, but multiple plc mutants showed reduced virulence. These findings indicate functional redundancy of the B. pseudomallei phospholipases in virulence.Mahidol UniversityThailand Research Fun

    Involvement of the Efflux Pumps in Chloramphenicol Selected Strains of Burkholderia thailandensis: Proteomic and Mechanistic Evidence

    Get PDF
    Burkholderia is a bacterial genus comprising several pathogenic species, including two species highly pathogenic for humans, B. pseudomallei and B. mallei. B. thailandensis is a weakly pathogenic species closely related to both B. pseudomallei and B. mallei. It is used as a study model. These bacteria are able to exhibit multiple resistance mechanisms towards various families of antibiotics. By sequentially plating B. thailandensis wild type strains on chloramphenicol we obtained several resistant variants. This chloramphenicol-induced resistance was associated with resistance against structurally unrelated antibiotics including quinolones and tetracyclines. We functionally and proteomically demonstrate that this multidrug resistance phenotype, identified in chloramphenicol-resistant variants, is associated with the overexpression of two different efflux pumps. These efflux pumps are able to expel antibiotics from several families, including chloramphenicol, quinolones, tetracyclines, trimethoprim and some β-lactams, and present a partial susceptibility to efflux pump inhibitors. It is thus possible that Burkholderia species can develop such adaptive resistance mechanisms in response to antibiotic pressure resulting in emergence of multidrug resistant strains. Antibiotics known to easily induce overexpression of these efflux pumps should be used with discernment in the treatment of Burkholderia infections

    Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Get PDF
    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme

    Alanine Racemase Mutants of Burkholderia pseudomallei and Burkholderia mallei and Use of Alanine Racemase as a Non-Antibiotic-Based Selectable Marker

    Get PDF
    Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous d-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for d-alanine. During log phase growth without d-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages

    Evolution of Burkholderia pseudomallei in Recurrent Melioidosis

    Get PDF
    Burkholderia pseudomallei, the etiologic agent of human melioidosis, is capable of causing severe acute infection with overwhelming septicemia leading to death. A high rate of recurrent disease occurs in adult patients, most often due to recrudescence of the initial infecting strain. Pathogen persistence and evolution during such relapsing infections are not well understood. Bacterial cells present in the primary inoculum and in late infections may differ greatly, as has been observed in chronic disease, or they may be genetically similar. To test these alternative models, we conducted whole-genome comparisons of clonal primary and relapse B. pseudomallei isolates recovered six months to six years apart from four adult Thai patients. We found differences within each of the four pairs, and some, including a 330 Kb deletion, affected substantial portions of the genome. Many of the changes were associated with increased antibiotic resistance. We also found evidence of positive selection for deleterious mutations in a TetR family transcriptional regulator from a set of 107 additional B. pseudomallei strains. As part of the study, we sequenced to base-pair accuracy the genome of B. pseudomallei strain 1026b, the model used for genetic studies of B. pseudomallei pathogenesis and antibiotic resistance. Our findings provide new insights into pathogen evolution during long-term infections and have important implications for the development of intervention strategies to combat recurrent melioidosis

    Human, animal, water source interactions and leptospirosis in Thailand

    No full text
    In Thailand, leptospirosis is primarily associated with those who work in agricultural occupations. Leptospirosis control is hampered by a poor understanding of the complex interactions between humans, animal reservoirs, Leptospira, and the variable spatial environment in which these factors coexist. We aimed to address key knowledge gaps concerning leptospirosis disease dynamics and the human–animal–water-source interface in two high-risk areas in Thailand. We conducted a cross-sectional survey among 746 study participants in two high-risk areas for leptospirosis in Thailand: Sisaket (SSK) and Nakhon Si Thammarat (NST). Interactions among humans, animals and water sources were quantified and analyzed. The presence of different animal species and thus contact patterns were different in NST and SSK. The consumption of water from the shared sources between the two areas was different. Those whose occupations were related to animals or environmental water and those who consumed water from more than two sources were more likely to have been infected with leptospirosis, with adjusted odds ratios 4.31 (95% CI 1.17–15.83) and 10.74 (95% CI 2.28–50.53), respectively. Understanding specific water-source sharing networks and human–animal contact patterns is useful when designing national and area-specific control programmes to prevent and control leptospirosis outbreaks

    Optimization of culture protocols to isolate Leptospira spp. from environmental water, field investigation, and identification of factors associated with the presence of Leptospira spp. in the environment

    No full text
    The successful culture of&nbsp;Leptospira&nbsp;spp. from the environment is challenging. Here, we optimized the isolation of&nbsp;Leptospira&nbsp;spp. from water samples spiked with different species and initial concentrations of this organism. The time periods between water sampling and the isolation process were varied (0, 2, and 4 weeks). Bacterial cultures were observed under a microscope, and cultures were graded for cell density, weekly, for 12 weeks. Most pathogenic&nbsp;Leptospira&nbsp;spp. were difficult to culture under all conditions. All conditions of water samples spiked with novel species of&nbsp;Leptospira&nbsp;subclade P1 were culture positive within 2 weeks. For&nbsp;Leptospira&nbsp;subclade P2, storing samples for 2 weeks prior to isolation resulted in more successful isolation compared with isolation after other storage conditions. For subclade S1, all samples with initial bacterial concentrations of more than 103&nbsp;colonies/mL, under all storage conditions, were successfully cultured. These results suggest that storing contaminated water samples for 2 to 4 weeks in the dark at an ambient temperature prior to culturing can improve the isolation of&nbsp;Leptospira&nbsp;spp. from the samples. We implemented this protocol and collected water samples from natural sources accessed by both humans and animals.&nbsp;Leptospira&nbsp;spp. was identified in 32% (35/109) of water samples. The animal species using a water source influenced the likelihood of water samples being contaminated with&nbsp;Leptospira&nbsp;spp. Cultures of&nbsp;Leptospira&nbsp;spp. from environmental samples can provide useful information for understanding the complex interactions between humans, animals and the environment in the transmission of leptospirosis.</div
    corecore