73 research outputs found

    Glycolytic and Non-glycolytic Functions of Mycobacterium tuberculosis Fructose-1,6-bisphosphate Aldolase, an Essential Enzyme Produced by Replicating and Non-replicating Bacilli

    Get PDF
    The search for antituberculosis drugs active against persistent bacilli has led to our interest in metallodependent class II fructose- 1,6-bisphosphate aldolase (FBA-tb), a key enzyme of gluconeogenesis absent from mammalian cells. Knock-out experiments at the fba-tb locus indicated that this gene is required for the growth of Mycobacterium tuberculosis on gluconeogenetic substrates and in glucose-containing medium. Surface labeling and enzymatic activity measurements revealed that this enzyme was exported to the cell surface of M. tuberculosis and produced under various axenic growth conditions including oxygen depletion and hence by non-replicating bacilli. Importantly, FBA-tb was also produced in vivo in the lungs of infected guinea pigs and mice. FBA-tb bound human plasmin(ogen) and protected FBA-tb-bound plasmin from regulation by α 2-antiplasmin, suggestive of an involvement of this enzyme in host/pathogen interactions. The crystal structures of FBA-tb in the native form and in complex with a hydroxamate substrate analog were determined to 2.35- and 1.9-Å resolution, respectively. Whereas inhibitor attachment had no effect on the plasminogen binding activity of FBA-tb, it competed with the natural substrate of the enzyme, fructose 1,6-bisphosphate, and substantiated a previously unknown reaction mechanism associated with metallodependent aldolases involving recruitment of the catalytic zinc ion by the substrate upon active site binding. Altogether, our results highlight the potential of FBA-tb as a novel therapeutic target against both replicating and non-replicating bacilli.Fil: Santangelo, María de la Paz. State University of Colorado - Fort Collins; Estados Unidos. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gest, Petra M.. State University of Colorado - Fort Collins; Estados UnidosFil: Guerin, Marcelo E.. Universidad del País Vasco; EspañaFil: Coinçon, Mathieu. University of Montreal; CanadáFil: Pham, Ha. State University of Colorado - Fort Collins; Estados UnidosFil: Ryan, Gavin. State University of Colorado - Fort Collins; Estados UnidosFil: Puckett, Susan E.. Cornell University; Estados UnidosFil: Spencer, John S.. State University of Colorado - Fort Collins; Estados UnidosFil: Gonzalez Juarrero, Mercedes. State University of Colorado - Fort Collins; Estados UnidosFil: Daher, Racha. Universite de Paris XI. Institut de Chimie Moléculaire et des Matériaux d'Orsay; FranciaFil: Lenaerts, Anne J.. State University of Colorado - Fort Collins; Estados UnidosFil: Schnappinger, Dirk. Cornell University; Estados UnidosFil: Therisod, Michel. Universite de Paris XI. Institut de Chimie Moléculaire et des Matériaux d'Orsay; FranciaFil: Ehrt, Sabine. Cornell University; Estados UnidosFil: Sygusch, Jurgen. University of Montreal; CanadáFil: Jackson, Mary. State University of Colorado - Fort Collins; Estados Unido

    Enzymatic glyceride synthesis in a foam reactor

    Full text link
    We report the results of our study on Rhizomucor miehei lipaseâ catalyzed lauric acidâ glycerol esterification in a foam reactor. A satisfactory yield of glyceride synthesis can be achieved with an unusually high initial water content (50% w/w). We found that product formation could be regulated by controlling foaming. Foaming was a function of the air flow rate, reaction temperature, pH value, ionic strength, and substrate molar ratio. Monolaurin and dilaurin, which constituted nearly 80% of the total yield, were the two dominant products in this reaction; trilaurin was also formed at the initial stages of the reaction. A study of pH and ionic strength effects on an independent basis revealed that they affect the interfacial mechanism in different manners. On varying the ratio of lauric acid and glycerol, only a slight change in the degree of conversion was detected and the consumption rate of fatty acid was approximately the same.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141443/1/aocs0643.pd
    corecore