2,730 research outputs found

    A tight analysis of Kierstead-Trotter algorithm for online unit interval coloring

    Full text link
    Kierstead and Trotter (Congressus Numerantium 33, 1981) proved that their algorithm is an optimal online algorithm for the online interval coloring problem. In this paper, for online unit interval coloring, we show that the number of colors used by the Kierstead-Trotter algorithm is at most 3ω(G)33 \omega(G) - 3, where ω(G)\omega(G) is the size of the maximum clique in a given graph GG, and it is the best possible.Comment: 4 page

    Processing of yttrium-doped barium zirconate for high proton conductivity

    Get PDF
    The factors governing the transport properties of yttrium-doped barium zirconate (BYZ) have been explored, with the aim of attaining reproducible proton conductivity in well-densified samples. It was found that a small initial particle size (50–100 nm) and high-temperature sintering (1600 °C) in the presence of excess barium were essential. By this procedure, BaZr0.8Y0.2O3-d with 93% to 99% theoretical density and total (bulk plus grain boundary) conductivity of 7.9 × 10^-3 S/cm at 600 °C [as measured by alternating current (ac) impedance spectroscopy under humidified nitrogen] could be reliably prepared. Samples sintered in the absence of excess barium displayed yttria-like precipitates and a bulk conductivity that was reduced by more than 2 orders of magnitude

    An Axiomatic Analysis of Diversity Evaluation Metrics: Introducing the Rank-Biased Utility Metric

    Full text link
    Many evaluation metrics have been defined to evaluate the effectiveness ad-hoc retrieval and search result diversification systems. However, it is often unclear which evaluation metric should be used to analyze the performance of retrieval systems given a specific task. Axiomatic analysis is an informative mechanism to understand the fundamentals of metrics and their suitability for particular scenarios. In this paper, we define a constraint-based axiomatic framework to study the suitability of existing metrics in search result diversification scenarios. The analysis informed the definition of Rank-Biased Utility (RBU) -- an adaptation of the well-known Rank-Biased Precision metric -- that takes into account redundancy and the user effort associated to the inspection of documents in the ranking. Our experiments over standard diversity evaluation campaigns show that the proposed metric captures quality criteria reflected by different metrics, being suitable in the absence of knowledge about particular features of the scenario under study.Comment: Original version: 10 pages. Preprint of full paper to appear at SIGIR'18: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, July 8-12, 2018, Ann Arbor, MI, USA. ACM, New York, NY, US

    Alcohol Fuel Cells at Optimal Temperatures

    Get PDF
    High-power-density alcohol fuel cells can relieve many of the daunting challenges facing a hydrogen energy economy. Here, such fuel cells are achieved using CsH2PO4 as the electrolyte and integrating into the anode chamber a Cu-ZnO/Al2O3 methanol steam-reforming catalyst. The temperature of operation, ~250°C, is matched both to the optimal value for fuel cell power output and for reforming. Peak power densities using methanol and ethanol were 226 and 100 mW/cm^2, respectively. The high power output (305 mW/cm^2) obtained from reformate fuel containing 1% CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temperatures

    Static black hole uniqueness and Penrose inequality

    Full text link
    Under certain conditions, we give a new way to prove the uniqueness of static black hole in higher dimensional asymptotically flat spacetimes. In the proof, the Penrose inequality plays a key role in higher dimensions as well as four dimensions.Comment: 6 page

    L1521E: A Starless Core in the Early Evolutionary Stage ?

    Full text link
    We have studied the physical and chemical properties of a quiescent starless core L1521E with various molecular lines. It is found that there exists a compact dense core traced by the H^13CO^+, HN^13C, CCS, and HC_3N lines; their distributions have a single peak at the same position. The core radius is as small as 0.031 pc, whereas the H_2 density at the peak position is as high as (1.3-5.6)times10^5 cm^-3. Although the density is high enough to excite the inversion transitions of NH_3, these lines are found to be very faint in L1521E. The distributions of NH_3 and CCS seem to be different from those of well-studied starless cores, L1498 and L1544, where the distribution of CCS shows a shell-like structure while that of NH_3 is concentrated at the center of the core. Abundances of carbon-chain molecules are higher in L1521E than the other dark cloud cores, and especially those of sulfur-bearing molecules C_nS are comparable to the cyanopolyyne peak of TMC-1. Our results suggest that L1521E would be in a very early stage of physical and chemical evolution.Comment: 10 pages, 3 EPS figures, uses aaspp4.sty and epsf.sty, AAS LaTeX macros v4.0, The Astrophysical Journal, in pres

    Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes

    Get PDF
    The compound CsH2PO4 has emerged as a viable electrolyte for intermediate temperature (200–300 °C) fuel cells. In order to settle the question of the high temperature behavior of this material, conductivity measurements were performed by two-point AC impedance spectroscopy under humidified conditions (p[H2O] = 0.4 atm). A transition to a stable, high conductivity phase was observed at 230 °C, with the conductivity rising to a value of 2.2 × 10^–2 S cm^–1 at 240 °C and the activation energy of proton transport dropping to 0.42 eV. In the absence of active humidification, dehydration of CsH2PO4 does indeed occur, but, in contradiction to some suggestions in the literature, the dehydration process is not responsible for the high conductivity at this temperature. Electrochemical characterization by galvanostatic current interrupt (GCI) methods and three-point AC impedance spectroscopy (under uniform, humidified gases) of CsH2PO4 based fuel cells, in which a composite mixture of the electrolyte, Pt supported on carbon, Pt black and carbon black served as the electrodes, showed that the overpotential for hydrogen electrooxidation was virtually immeasurable. The overpotential for oxygen electroreduction, however, was found to be on the order of 100 mV at 100 mA cm^–2. Thus, for fuel cells in which the supported electrolyte membrane was only 25 µm in thickness and in which a peak power density of 415 mW cm^–2 was achieved, the majority of the overpotential was found to be due to the slow rate of oxygen electrocatalysis. While the much faster kinetics at the anode over those at the cathode are not surprising, the result indicates that enhancing power output beyond the present levels will require improving cathode properties rather than further lowering the electrolyte thickness. In addition to the characterization of the transport and electrochemical properties of CsH2PO4, a discussion of the entropy of the superprotonic transition and the implications for proton transport is presented

    Mechanistic studies on DNA damage by minor groove binding copper–phenanthroline conjugates

    Get PDF
    Copper–phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper–phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11–54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from β-elimination of 2-deoxyribonolactone by copper–phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes
    corecore