357 research outputs found

    Antiferro-quadrupole state of orbital-degenerate Kondo lattice model with f^2 configuration

    Full text link
    To clarify a key role of ff orbitals in the emergence of antiferro-quadrupole structure in PrPb3_{3}, we investigate the ground-state property of an orbital-degenerate Kondo lattice model by numerical diagonalization techniques. In PrPb3_{3}, Pr3+^{3+} has a 4f24f^{2} configuration and the crystalline-electric-field ground state is a non-Kramers doublet Γ3\Gamma_{3}. In a jj-jj coupling scheme, the Γ3\Gamma_{3} state is described by two local singlets, each of which consists of two ff electrons with one in Γ7\Gamma_{7} and another in Γ8\Gamma_{8} orbitals. Since in a cubic structure, Γ7\Gamma_{7} has localized nature, while Γ8\Gamma_{8} orbitals are rather itinerant, we propose the orbital-degenerate Kondo lattice model for an effective Hamiltonian of PrPb3_{3}. We show that an antiferro-orbital state is favored by the so-called double-exchange mechanism which is characteristic of multi-orbital systems.Comment: 3 pages, 3 figures, Proceedings of Skutterudite2007 (September 26-30, 2007, Kobe

    Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia

    Get PDF
    The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE) is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE

    Anomalous Anisotropic Magnetoresistance in Heavy-Fermion PrFe4P12

    Full text link
    We have investigated the anisotropy of the magnetoresistance in the Pr-based HF compound PrFe4P12. The large anisotropy of effective mass and its strong field dependence have been confirmed by resistivity measurements. Particularly for H||[111], where the effective mass is most strongly enhanced, the non-Fermi liquid behavior has been observed. Also, we have found the angular dependence of the magnetoresistance sharply enhanced at H||[111], which is evidently correlated with both the non-Fermi liquid behavior and the high-field ordered state (B-phase).Comment: 3 pages, 3 figures. J. Phys. Soc. Jpn. Vol.77, No.8, in pres

    Microscopic Mechanism for Staggered Scalar Order in PrFe4P12

    Full text link
    A microscopic model is proposed for the scalar order in PrFe4P12 where f2 crystalline electric field (CEF) singlet and triplet states interact with two conduction bands. By combining the dynamical mean-field theory and the continuous-time quantum Monte Carlo, we obtain an electronic order with staggered Kondo and CEF singlets with the total conduction number being unity per site. The ground state becomes semimetallic provided that the two conduction bands have different occupation numbers. This model naturally explains experimentally observed properties in the ordered phase of PrFe4P12 such as the scalar order parameter, temperature dependence of the resistivity, field-induced staggered moment, and inelastic features in neutron scattering. The Kondo effect plays an essential role for ordering, in strong contrast with ordinary magnetic orders by the RKKY interaction.Comment: 4 pages, 4figure

    Field-angle-dependent specific heat measurements and gap determination of a heavy fermion superconductor URu2Si2

    Full text link
    To identify the superconducting gap structure in URu2Si2 we perform field-angle-dependent specific heat measurements for the two principal orientations in addition to field rotations, and theoretical analysis based on microscopic calculations. The Sommerfeld coefficient \gamma(H)'s in the mixed state exhibit distinctively different field-dependence. This comes from point nodes and substantial Pauli paramagnetic effect of URu2Si2. These two features combined give rise to a consistent picture of superconducting properties, including a possible first order transition of Hc2 at low temperatures.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Elastic Properties and Magnetic Phase Diagrams of Dense Kondo Compound Ce0.75La0.25B6

    Full text link
    We have investigated the elastic properties of the cubic dense Kondo compound Ce0.75La0.25B6 by means of ultrasonic measurements. We have obtained magnetic fields vs temperatures (H-T) phase diagrams under magnetic fields along the crystallographic [001], [110] and [111] axes. An ordered phase IV showing the elastic softening of c44 locates in low temperature region between 1.6 and 1.1 K below 0.7 T in all field directions. The phase IV shows an isotropic nature with regard to the field directions, while the antiferro-magnetic phase III shows an anisotropic character. A remarkable softening of c44 and a spontaneous trigonal distortion εyz+εzx+εxy recently reported by Akatsu et al. [J. Phys. Soc. Jpn. 72 (2003) 205] in the phase IV favor a ferro-quadrupole (FQ) moment of Oyz+Ozx+Oxy induced by an octupole ordering.Comment: 9 figures, Strongly Correlated Electron

    Novel features in the flux-flow resistivity of the heavy fermion superconductor PrOs4_{4}Sb12_{12}

    Full text link
    We have investigated the electrical resistivity of the heavy fermion superconductor PrOs4_{4}Sb12_{12} in the mixed state. We found unusual double minima in the flux-flow resistivity as a function of magnetic field below the upper critical field for the first time, indicating double peaks in the pinning force density (FPF_{\rm P}). Estimated FPF_{\rm P} at the peak exhibits apparent dependence on applied field direction; composed of two-fold and four-fold symmetries mimicking the reported angular dependence of thermal conductivity (κ\kappa). The result is discussed in correlation with the double step superconducting (SC) transition in the specific heat and the multiple SC-phases inferred from the angular dependence of κ\kappa.Comment: 5 pages, 7 figures, to appear in J. Phys. Soc. Jpn. Vol. 74, No. 6 or

    Anisotropic low field behavior and the observation of flux jumps in CeCoIn5

    Full text link
    The magnetic behavior of the heavy fermion superconductor CeCoIn5 has been investigated. The low field magnetization data show flux jumps in the mixed state of the superconducting phase in a restricted range of temperature. These flux jumps begin to disappear below 1.7 K, and are completely absent at 1.5 K. The magnetization loops are asymmetric, suggesting that surface and geometrical factors dominate the pinning in this system. The lower critical field (Hc1), obtained from the magnetization data, shows a linear temperature dependence and is anisotropic. The calculated penetration depth is also anisotropic, which is consistent with the observation of an anisotropic superconducting gap in CeCoIn5. The critical currents, determined from the high field isothermal magnetization loops, are comparatively low (around 4000 A/cm2 at 1.6 K and 5 kOe).Comment: 4 pages 3 figure

    Detection of Neutron Scattering from Phase IV of Ce0.7La0.3B6: A Confirmation of the Octupole Order

    Full text link
    We have performed a single crystal neutron scattering experiment on Ce0.7La0.3B6 to investigate the order parameter of phase IV microscopically. Below the phase transition temperature 1.5 K of phase IV, weak but distinct superlattice reflections at the scattering vector (h/2,h/2,l/2) (h, l = odd number) have been observed by neutron scattering for the first time. The intensity of the superlattice reflections is stronger for high scattering vectors, which is quite different from the usual magnetic form factor of magnetic dipoles. This result directly evidences that the order parameter of phase IV has a complex magnetization density, consistent with the recent experimental and theoretical prediction in which the order parameter is the magnetic octupoles Tbeta with Gamma5 symmetry of point group Oh. Neutron scattering experiments using short wavelength neutrons, as done in this study, could become a general method to study the high-rank multipoles in f electron systems.Comment: 4 pages, 4 figure
    • …
    corecore