64 research outputs found

    Gen Dan QTL Pengendali Toleransi Tanaman Terhadap Keracunan Aluminium Dan Aplikasinya Untuk Pemuliaan Tanaman Di Indonesia

    Full text link
    Genetic knowledge of loci controlling Al toxicity tolerance is the key for a successful breeding program in developing Altolerant cultivars. Tolerance level of crop plants to Al toxicity is genetically controlled. The gene inheritance pattern is mainlyresulted from intensive studies of cereal crops, such as wheat, sorghum, maize, and rice. The trait can be controlled by asingle dominant gene, a single dominant gene with many alleles, a pair of dominant genes, or by many genes (QTL). Themajority of the Al tolerance genes identified so far belongs to two independent groups of gene families, i.e. aluminumactivatedmalate transporter (ALMT) and multidrug and toxic compound extrusion (MATE), both encoding transport proteinsinvolved in Al-activated organic acid release, mainly citrate and malate. The variations in Al toxicity tolerance phenotypes arestrongly correlated with the expressions of such genes in the root apical cells. Many Al tolerance QTLs have been mapped inthe genomes of various crop species and were found to be colocated with the ALMT and MATE genes. The genetic maps ofthe Al tolerance genes and QTLs facilitate breeding programs for developing Al-tolerant cultivars through marker-assistedbreeding methods. Al tolerance genes that have been isolated from genetically unrelated species can be used in genetictransformation studies of crop genotypes sexually incompatible to the gene source genotypes. The application of thesemolecular breeding methods expedites breeding programs to develop crop cultivars tolerance to Al toxicity and acid soils.Genomic technologies by using next-generation sequencing and high-throughput genotyping system accelerate Al toxicitytolerance gene and QTL discoveries of various crop species. The modern genomic technologies also facilitate morecomprehensive PGR characterization and utilization to accelerate identification and isolation of the Al tolerance genes andQTLs to be used in a more comprehensive breeding program to support national food self sufficiency and food securityprograms

    Pendekatan Bioteknologi dan Genomika untuk Perbaikan Genetik Tanaman Jarak Pagar sebagai Penghasil Bahan Bakar Nabati

    Full text link
    Jarak pagar (Jatropha curcas L.) merupakan tanaman penghasil minyak nabati yang dapat digunakan sebagai pengganti minyak diesel. Tanaman yang dapat tumbuh pada kondisi lahan kurang subur ini menarik minat banyak pihak untuk mengekplorasi potensinya sebagai tanaman sumber energi yang ramah lingkungan. Namun, masih banyak kendala yang dihadapi dalam pembudidayaannya supaya dapat diusahakan secara ekonomis. Dari aspek bahan tanaman dan budi daya, saat ini tanaman jarak pagar masih belum banyak diketahui. Bahkan, jarak pagar masih dianggap sebagai tanaman yang belum didomestikasikan secara penuh seperti ditunjukkan oleh fakta bahwa sebagian besar genotipe jarak pagar di dunia bijinya toksik sehingga ampas bijinya yang kaya protein tidak dapat langsung digunakan sebagai pakan ternak. Kematangan buah tanaman ini tidak serempak yang menyebabkan biaya panen tinggi. Rasio bunga betina dan bunga jantan yang rendah menyebabkan produktivitas bijinya rendah. Biji jarak pagar mengandung asam lemak poli tidak jenuh yang konsentrasinya perlu diturunkan untuk meningkatkan mutu minyak diesel. Pengetahuan genomika memungkinkan untuk mengetahui komposisi genom, komposisi dan fungsi gen, dan pemetaan genetik (gen/QTL) unggul jarak pagar. Pemahaman ini diperlukan agar genetika tanaman jarak pagar dapat dimanipulasi secara sistematis. Teknologi rekayasa genetika potensial diaplikasikan untuk perbaikan: arsitektur tanaman, karakter agronomis, kualitas biji, produktivitas, dan kualitas minyak. Tujuan tulisan ini ialah mengulas tentang pendekatan bioteknologi dan genomika untuk perbaikan genetik tanaman jarak pagar. Aplikasi bioteknologi memungkinkan untuk mempercepat program pemuliaan tanaman jarak pagar. Dengan bahan tanaman unggul, jarak pagar dapat dibudidayakan sehingga bermanfaat secara ekonomis dengan mutu minyak yang cocok sebagai bahan baku biodiesel

    Pemanfaatan Teknologi Sekuensing Genom Untuk Mempercepat Program Pemuliaan Tanaman

    Full text link
    Sumber daya genetik (SDG) tanaman menyediakan materi dasar untuk program pemuliaan tanaman. Namun, baru sebagian kecil (<1%) koleksi SDG yang dimanfaatkan untuk pemuliaan tanaman. Karakterisasi SDG sudah banyak dilakukan dengan menggunakan karakter morfologi, namun metode ini lambat, menyita waktu, dan memerlukan banyak tenaga. Teknologi sekuensing modern menghasilkan peta genom rujukan suatu spesies tanaman yang dapat mempercepat karakterisasi SDG menggunakan teknik next generation sequencing (NGS). Tulisan ini mengulas pemanfaatan teknologi sekuensing genom untuk karakterisasi, proteksi, dan pemanfaatan SDG untuk mempercepat program pemuliaan tanaman. Di Indonesia, teknologi NGS telah dimanfaatkan sejak 2010 untuk resekuensing genom komoditas unggulan nasional seperti kedelai, kakao, jagung, dan cabai merah. Jutaan SNP dan Indel telah diidentifikasi pada setiap komoditas sebagai sumber daya pemuliaan yang bernilai tinggi. Sebagian kecil SNP/Indel tersebut berada pada protein coding region yang potensial untuk penemuan gen-gen unggul. Selain SNP yang diidentifikasi pada semua genotipe, ditemukan SNP pada genotipe tertentu (SNP unik). Koleksi SNP dalam jumlah besar ini digunakan untuk mensintesis SNP chip untuk genotyping SDG secara cepat dan komprehensif. Didukung data fenotipe, SNP chip bermanfaat untuk melabel gen-gen unggul. Marka SNP yang berpautan dengan karakter unggul digunakan untuk menyeleksi individu pembawa karakter unggul tersebut. Dengan teknologi NGS, perakitan VUB tanaman dapat dilakukan lebih cepat, akurat, dan efisien. Dengan demikian, teknologi NGS dapat memfasilitasi karakterisasi dan pemanfaatan SDG untuk mem-percepat program pemuliaan tanaman

    Pemanfaatan Teknologi Genomika Dan Transformasi Genetik Untuk Meningkatkan Produktivitas Kelapa Sawit / the Use of Genomic and Genetic Transformation Technologies for Oil Palm Productivity Improvement

    Full text link
    One of the main constrains oil palm cultivation in Indonesia is the low productivity with national yield average of 4 ton oil/ha/year much lower than the yield potential of up to 18.5 ton oil/ha/year. Conventional breeding method is a slow process and time consuming. It takes 10-12 years just to complete a breeding cycle. Applying genomic together with DNA tansformation methods should expedite oil palm breeding program. The objective of this manuscript was to review the application of genomic and DNA transformation technologies to improve oil palm productivity and its potential use for yield improvement program in Indonesia. Genomic technology has resulted reference genome sequence map of two oil palm species (E. guineensis and E. oleifera) that resulted the isolation of Sh gene controlling oil yield heterosis, discovery of mantled fruit mechanism, and as a foundation for superior gene and tait-associated marker discoveries to accelerate oil palm breeding program. The use of Sh gene markers together with mantled fruit detection kit at early stages of plant development accelerates oil palm breeding cycle and facilitates mantled seedling detection to guarantee productivity improvement. Multiplication of superior individual plants using in vitro culture should guaranty plantation high productivity in the field. Genetic engineering technique is potentially applied to improve palm oil quality and nutrition content as well as developing products useful for producing bioplastics. Resequencing studies of three Indonesian oil palm genotypes resulted millions of genomic variations (SNPs and Indels) important for high valued breeding resources to accelerate national oil palm breeding programs. Genomic as well as DNA transformation technologies are potentially applied in Indonesia to support national oil palm productivity and oil quality improvement programs

    Genetic Diversity Analysis of Jatropha Curcas Provenances Using Randomly Amplified Polymorphic DNA Markers

    Full text link
    Genetic Diversity Analysis of Jatropha CurcasProvenances Using Randomly Amplified PolymorphicDNA Markers. Dani Satyawan and I Made Tasma.Jatropha curcas nuts are rich in oil that is higly suitable forHak Cipta © 2011, BB-Biogenthe production of bio-diesel or to be used directly inmodified diesel engines. The objective of this study was toassess the extent of genetic diversity among 50 J. curcasprovenances and one accession of J. integerrima usingRAPD markers. The fifty J. curcas provenances werecollected from ecologically diverse regions of Indonesia, andplanted in the Pakuwon Experimental Station (Sukabumi,West Java). Fourteen RAPD primers with 60-80% G+Ccontent were used in this genetic diversity analysis andproduced 64 bands with 95.7% polymorphism level. ThePolymerase Chain Reactions used to generate the RAPDbands sometimes produced inconsistent and nonreproducibleresults, necessitating the duplication of eachreaction to prevent scoring errors. Sixty one validated bandswere subsequently used for genetic diversity analysis usingUnweighted Pair Group Method Arithmetic (UPGMA)method and Dice coefficients. It was shown that thesimilarity coefficients among the provenances ranged from0.2 to 0.98 with an average similarity of 0.75. Dendrogramanalysis produced two major groups of provenances, withone outlier from South Lampung. There was no tendency forprovenances originated from nearby regions to clustertogether in each group, and several provenances showedmore similarities with provenances originated from distantregions. This pattern lent credence to reports that Jatrophawas introduced to Indonesia around four centuries ago andwas mainly spread by humans. Based on the meansimilarities among the accessions and their clusteringpattern, the genetic diversity of the Jatropha collectionappeared to be fairly low. Future additions of geneticmaterials from more diverse genetic background will benecessary to maintain the current progress of Jatrophaimprovement program

    QTL Study to Reveal Soybean Response on Abiotic and Biotic Stresses

    Full text link
    As an important grain legume, the improved soybean(Glycine max [L.] Merr.) adaptive to environmental changesis a valuable genetic resource. Strategy to minimize theimpact of climate effects should be underlined on soybeanproduction encompassing advanced genomics and wellpredicted future climate. Crops including soybean respondto climate change in the aspect of abiotic and bioticenvironmental factors. To predict soybean response toabiotic and biotic stresses, current progress of quantitativetrait loci (QTL) for abiotic and biotic stresses and floweringand related genomic resources could be accessed atSoyBase (http://www.soybase.org) and Phytozome(http://www.phytozome.net). As the involvement of abioticand biotic stresses modulating flowering in soybean, geneslinked to QTL for abiotic/biotic stress and flowering/maturitywere also potential for resisting the environmental changes.By mapping QTLs for flowering using one population indifferent locations (Korea and China) with distinctivelongitude, latitude, and altitude, syntenic correlationbetween these two QTLs on soybean chromosomes 6 and13 indicates the environmental specific role of syntenicregions. The information on QTL and related candidategenes may assist marker-assisted breeding and enactsoybean as a model of adaptive legume crop under abiotic/biotic stress
    • …
    corecore