41 research outputs found

    Homeostatic apoptosis prevents competition-induced atrophy in follicular B cells

    Get PDF
    While the intrinsic apoptosis pathway is thought to play a central role in shaping the B cell lineage, its precise role in mature B cell homeostasis remains elusive. Using mice in which mature B cells are unable to undergo apoptotic cell death, we show that apoptosis constrains follicular B (FoB) cell lifespan but plays no role in marginal zone B (MZB) cell homeostasis. In these mice, FoB cells accumulate abnormally. This intensifies intercellular competition for BAFF, resulting in a contraction of the MZB cell compartment, and reducing the growth, trafficking, and fitness of FoB cells. Diminished BAFF signaling dampens the non-canonical NF-ÎșB pathway, undermining FoB cell growth despite the concurrent triggering of a protective p53 response. Thus, MZB and FoB cells exhibit a differential requirement for the intrinsic apoptosis pathway. Homeostatic apoptosis constrains the size of the FoB cell compartment, thereby preventing competition-induced FoB cell atrophy.StĂ©phane Chappaz, Kate McArthur, Liam Kealy, Charity W. Law, Maximilien Tailler, Rachael M. Lane ... et al

    By reducing global mRNA translation in several ways, 2-deoxyglucose lowers MCL-1 protein and sensitizes hemopoietic tumor cells to BH3 mimetic ABT737

    Get PDF
    Drugs targeting various pro-survival BCL-2 family members (''BH3 mimetics'') have efficacy in hemopoietic malignancies, but the non-targeted pro-survival family members can promote resistance. Pertinently, the sensitivity of some tumor cell lines to BH3 mimetic ABT737, which targets BCL-2, BCL-XL, and BCL-W but not MCL-1, is enhanced by 2-deoxyglucose (2DG). We found that 2DG augmented apoptosis induced by ABT737 in 3 of 8 human hemopoietic tumor cell lines, most strongly in pre-B acute lymphocytic leukemia cell line NALM-6, the focus of our mechanistic studies. Although 2DG can lower MCL-1 translation, how it does so is incompletely understood, in part because 2DG inhibits both glycolysis and protein glycosylation in the endoplasmic reticulum (ER). Its glycolysis inhibition lowered ATP and, through the AMPK/mTORC1 pathway, markedly reduced global protein synthesis, as did an ER integrated stress response. A dual reporter assay revealed that 2DG impeded not only cap-dependent translation but also elongation or cap-independent translation. MCL-1 protein fell markedly, whereas 12 other BCL-2 family members were unaffected. We ascribe the MCL-1 drop to the global fall in translation, exacerbated for mRNAs with a structured 5' untranslated region (5'UTR) containing potential regulatory motifs like those in MCL-1 mRNA and the short half-life of MCL-1 protein. Pertinently, 2DG downregulated two other short-lived oncoproteins, MYC and MDM2. Thus, our results support MCL-1 as a critical 2DG target, but also reveal multiple effects on global translation that may well also affect its promotion of apoptosis

    Restoration of the immunogenicity of cisplatin-induced cancer cell death by endoplasmic reticulum stress.

    No full text
    In contrast to other cytotoxic agents including anthracyclins and oxaliplatin (OXP), cisplatin (CDDP) fails to induce immunogenic tumor cell death that would allow to stimulate an anticancer immune response and hence to amplify its therapeutic efficacy. This failure to induce immunogenic cell death can be attributed to CDDP's incapacity to elicit the translocation of calreticulin (CRT) from the lumen of the endoplasmic reticulum (ER) to the cell surface. Here, we show that, in contrast to OXP, CDDP is unable to activate the protein kinase-like ER kinase (PERK)-dependent phosphorylation of the eukaryotic translation initiation factor 2α (eIF2α). Accordingly, CDDP also failed to stimulate the formation of stress granules and macroautophagy, two processes that only occur after eIF2α phosphorylation. Using a screening method that monitors the voyage of CRT from the ER lumen to the cell surface, we identified thapsigargin (THAPS), an inhibitor of the sarco/ER Ca(2+)-ATPase as a molecule that on its own does not stimulate CRT exposure, yet endows CDDP with the capacity to do so. The combination of ER stress inducers (such as THAPS or tunicamycin) and CDDP effectively induced the translocation of CRT to the plasma membrane, as well as immunogenic cell death, although ER stress or CDDP alone was insufficient to induce CRT exposure and immunogenic cell death. Altogether, our results underscore the contribution of the ER stress response to the immunogenicity of cell death
    corecore