15 research outputs found

    Honey Yield Forecast Using Radial Basis Functions

    Get PDF
    Honey yields are difficult to predict and have been usually associated with weather conditions. Although some specific meteorological variables have been associated with honey yields, the reported relationships concern a specific geographical region of the globe for a given time frame and cannot be used for different regions, where climate may behave differently. In this study, Radial Basis Function (RBF) interpolation models were used to explore the relationships between weather variables and honey yields. RBF interpolation models can produce excellent interpolants, even for poorly distributed data points, capable of mimicking well unknown responses providing reliable surrogates that can be used either for prediction or to extract relationships between variables. The selection of the predictors is of the utmost importance and an automated forward-backward variable screening procedure was tailored for selecting variables with good predicting ability. Honey forecasts for Andalusia, the first Spanish autonomous community in honey production, were obtained using RBF models considering subsets of variables calculated by the variable screening procedure

    Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes

    Get PDF
    Commonly used bias correction methods such as quantile mapping (QM) assume the function of error correction values between modeled and observed distributions are stationary or time invariant. This article finds that this function of the error correction values cannot be assumed to be stationary. As a result, QM lacks justification to inflate/deflate various moments of the climate change signal. Previous adaptations of QM, most notably quantile delta mapping (QDM), have been developed that do not rely on this assumption of stationarity. Here, we outline a methodology called scaled distribution mapping (SDM), which is conceptually similar to QDM, but more explicitly accounts for the frequency of rain days and the likelihood of individual events. The SDM method is found to outperform QM, QDM, and detrended QM in its ability to better preserve raw climate model projected changes to meteorological variables such as temperature and precipitation

    Changes of hydro-meteorological trigger conditions for debris flows in a future alpine climate

    No full text
    Debris-flow activity is strongly controlled by hydro-meteorological trigger conditions, which are expected to change in a future climate. In this study we connect a regional hydro-meteorological susceptibility model for debris flows with climate projections until 2100 to assess changes of the frequency of critical trigger conditions for different trigger types (long-lasting rainfall, short-duration storm, snow-melt, rain-on-snow) in six regions in the Austrian Alps. We find limited annual changes of the number of days critical for debris-flow initiation when averaged over all regions, but distinct changes when separating between hydro-meteorological trigger types and study region. Changes become more evident at the monthly/seasonal scale, with a general trend of critical debris-flow trigger conditions earlier in the year. The outcomes of this study serve as a basis for the development of adaption strategies for future risk management.</p

    Changes of hydro-meteorological trigger conditions for debris flows in a future alpine climate

    No full text
    Debris-flow activity is strongly controlled by hydro-meteorological trigger conditions, which are expected to change in a future climate. In this study we connect a regional hydro-meteorological susceptibility model for debris flows with climate projections until 2100 to assess changes of the frequency of critical trigger conditions for different trigger types (long-lasting rainfall, short-duration storm, snow-melt, rain-on-snow) in six regions in the Austrian Alps. We find limited annual changes of the number of days critical for debris-flow initiation when averaged over all regions, but distinct changes when separating between hydro-meteorological trigger types and study region. Changes become more evident at the monthly/seasonal scale, with a general trend of critical debris-flow trigger conditions earlier in the year. The outcomes of this study serve as a basis for the development of adaption strategies for future risk management.Water Resource

    Scaled distribution mapping: a bias correction method that preserves raw climate model projected changes

    No full text
    Commonly used bias correction methods such as quantile mapping (QM) assume the function of error correction values between modeled and observed distributions are stationary or time invariant. This article finds that this function of the error correction values cannot be assumed to be stationary. As a result, QM lacks justification to inflate/deflate various moments of the climate change signal. Previous adaptations of QM, most notably quantile delta mapping (QDM), have been developed that do not rely on this assumption of stationarity. Here, we outline a methodology called scaled distribution mapping (SDM), which is conceptually similar to QDM, but more explicitly accounts for the frequency of rain days and the likelihood of individual events. The SDM method is found to outperform QM, QDM, and detrended QM in its ability to better preserve raw climate model projected changes to meteorological variables such as temperature and precipitation.Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management [OKS15]; Austrian Klima- und Energiefonds through the Austrian Climate Research Program (ACRP) [B368584, B464795]open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore