21,303 research outputs found

    Exact Solution of a One-Dimensional Multicomponent Lattice Gas with Hyperbolic Interaction

    Full text link
    We present the exact solution to a one-dimensional multicomponent quantum lattice model interacting by an exchange operator which falls off as the inverse-sinh-square of the distance. This interaction contains a variable range as a parameter, and can thus interpolate between the known solutions for the nearest-neighbor chain, and the inverse-square chain. The energy, susceptibility, charge stiffness and the dispersion relations for low-lying excitations are explicitly calculated for the absolute ground state, as a function of both the range of the interaction and the number of species of fermions.Comment: 13 REVTeX pages + 5 uuencoded figures, UoU-003059

    Towards a European Union Child Basic Income? Within and between country effects

    Get PDF
    ABSTRACT: This paper explores the within and between country distributional implications of an illustrative Child Basic Income (CBI) operated at EU level. Using EUROMOD, we establish that a universal payment of €50 per month per child aged under 6 could take 800,000 children in this age group out of poverty. It could be financed by an EU flat tax of 0.2% on all household income, assuming that it would also be taxed nationally as income. Most member states and virtually all families with children aged under 6 would be net gainers. We simulate two versions of EU CBI, with the benefit rate of €50 per month adjusted or not for differences in purchasing power between member states. In general, fiscal flows between member states, and also poverty reduction, would be smaller under the adjusted version. The political feasibility of such a scheme might be questioned, especially within the net contributor countries. Nevertheless, for those seeking ways to strengthen solidarity across national boundaries, a scheme supporting the incomes of families with young children, wherever in the EU they might reside "could be a demonstration of the EU's commitment to children, to the future" (EC 2012a: 62)

    Instabilities in Multi-Planet Circumbinary Systems

    Get PDF
    The majority of the discovered transiting circumbinary planets are located very near the innermost stable orbits permitted, raising questions about the origins of planets in such perturbed environments. Most favored formation scenarios invoke formation at larger distances and subsequent migration to their current locations. Disk-driven planet migration in multi-planet systems is likely to trap planets in mean motion resonances and drive planets inward into regions of larger dynamical perturbations from the binary. We demonstrate how planet-planet resonances can interact with the binary through secular forcing and mean-motion resonances, driving chaos in the system. We show how this chaos will shape the architecture of circumbinary systems, with specific applications to Kepler 47 and the Pluto-Charon system, limiting maximum possible stable eccentricities and indicating what resonances are likely to exist. We are also able to constrain the minimum migration rates of resonant circumbinary planets.Comment: Accepted for publication in MNRA

    Solution of Some Integrable One-Dimensional Quantum Systems

    Get PDF
    In this paper, we investigate a family of one-dimensional multi-component quantum many-body systems. The interaction is an exchange interaction based on the familiar family of integrable systems which includes the inverse square potential. We show these systems to be integrable, and exploit this integrability to completely determine the spectrum including degeneracy, and thus the thermodynamics. The periodic inverse square case is worked out explicitly. Next, we show that in the limit of strong interaction the "spin" degrees of freedom decouple. Taking this limit for our example, we obtain a complete solution to a lattice system introduced recently by Shastry, and Haldane; our solution reproduces the numerical results. Finally, we emphasize the simple explanation for the high multiplicities found in this model

    Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Sutherland, K. M., Wankel, S. D., & Hansel, C. M. Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proceedings of the National Academy of Sciences of the United States of America, 117(7), (2020): 3433-3439, doi:10.1073/pnas.1912313117.The balance between sources and sinks of molecular oxygen in the oceans has greatly impacted the composition of Earth’s atmosphere since the evolution of oxygenic photosynthesis, thereby exerting key influence on Earth’s climate and the redox state of (sub)surface Earth. The canonical source and sink terms of the marine oxygen budget include photosynthesis, respiration, photorespiration, the Mehler reaction, and other smaller terms. However, recent advances in understanding cryptic oxygen cycling, namely the ubiquitous one-electron reduction of O2 to superoxide by microorganisms outside the cell, remains unexplored as a potential player in global oxygen dynamics. Here we show that dark extracellular superoxide production by marine microbes represents a previously unconsidered global oxygen flux and sink comparable in magnitude to other key terms. We estimate that extracellular superoxide production represents a gross oxygen sink comprising about a third of marine gross oxygen production, and a net oxygen sink amounting to 15 to 50% of that. We further demonstrate that this total marine dark extracellular superoxide flux is consistent with concentrations of superoxide in marine environments. These findings underscore prolific marine sources of reactive oxygen species and a complex and dynamic oxygen cycle in which oxygen consumption and corresponding carbon oxidation are not necessarily confined to cell membranes or exclusively related to respiration. This revised model of the marine oxygen cycle will ultimately allow for greater reconciliation among estimates of primary production and respiration and a greater mechanistic understanding of redox cycling in the ocean.This work was supported by NASA Earth and Space Science Fellowship NNX15AR62H to K.M.S., NASA Exobiology grant NNX15AM04G to S.D.W. and C.M.H., and NSF Division of Ocean Sciences grant 1355720 to C.M.H. This research was further supported in part by Hanse-Wissenschaftskolleg Institute of Advanced Study fellowships to C.M.H. and S.D.W. We thank Danielle Hicks for assistance with figures and Community Earth Systems Model (CESM) Large Ensemble Project for the availability and use of its data product. The CESM project is primarily supported by the NSF

    Normative EMG activation patterns of school-age children during gait

    Get PDF
    Gait analysis is widely used in clinics to study walking abnormalities for surgery planning, definition of rehabilitation protocols, and objective evaluation of clinical outcomes. Surface electromyography allows the study of muscle activity non-invasively and the evaluation of the timing of muscle activation during movement. The aim of this study was to present a normative dataset of muscle activation patterns obtained from a large number of strides in a population of 100 healthy children aged 6-11 years. The activity of Tibialis Anterior, Lateral head of Gastrocnemius, Vastus Medialis, Rectus Femoris and Lateral Hamstrings on both lower limbs was analyzed during a 2.5-min walk at free speed. More than 120 consecutive strides were analyzed for each child, resulting in approximately 28,000 strides. Onset and offset instants were reported for each observed muscle. The analysis of a high number of strides for each participant allowed us to obtain the most recurrent patterns of activation during gait, demonstrating that a subject uses a specific muscle with different activation modalities even in the same walk. The knowledge of the various activation patterns and of their statistics will be of help in clinical gait analysis and will serve as reference in the design of future gait studie

    Spectral flow in the supersymmetric tt-JJ model with a 1/r21/r^2 interaction

    Full text link
    The spectral flow in the supersymmetric {\it t-J} model with 1/r21/r^2 interaction is studied by analyzing the exact spectrum with twisted boundary conditions. The spectral flows for the charge and spin sectors are shown to nicely fit in with the motif picture in the asymptotic Bethe ansatz. Although fractional exclusion statistics for the spin sector clearly shows up in the period of the spectral flow at half filling, such a property is generally hidden once any number of holes are doped, because the commensurability condition in the motif is not met in the metallic phase.Comment: 8 pages, revtex, Phys. Rev. B54 (1996) August 15, in pres
    corecore