442 research outputs found

    Cosmological particle creation in states of low energy

    Full text link
    The recently proposed states of low energy provide a well-motivated class of reference states for the quantized linear scalar field on cosmological Friedmann-Robertson-Walker spacetimes. The low energy property of a state is localized close to some value of the cosmological time coordinate. We present calculations of the relative cosmological particle production between a state of low energy at early time and another such state at later time. In an exponentially expanding Universe, we find that the particle production shows oscillations in the spatial frequency modes. The basis of the method for calculating the relative particle production is completely rigorous. Approximations are only used at the level of numerical calculation.Comment: 24 pages, 7 figure

    Geometric phases, gauge symmetries and ray representation

    Get PDF
    The conventional formulation of the non-adiabatic (Aharonov-Anandan) phase is based on the equivalence class {eiα(t)ψ(t,x⃗)}\{e^{i\alpha(t)}\psi(t,\vec{x})\} which is not a symmetry of the Schr\"{o}dinger equation. This equivalence class when understood as defining generalized rays in the Hilbert space is not generally consistent with the superposition principle in interference and polarization phenomena. The hidden local gauge symmetry, which arises from the arbitrariness of the choice of coordinates in the functional space, is then proposed as a basic gauge symmetry in the non-adiabatic phase. This re-formulation reproduces all the successful aspects of the non-adiabatic phase in a manner manifestly consistent with the conventional notion of rays and the superposition principle. The hidden local symmetry is thus identified as the natural origin of the gauge symmetry in both of the adiabatic and non-adiabatic phases in the absence of gauge fields, and it allows a unified treatment of all the geometric phases. The non-adiabatic phase may well be regarded as a special case of the adiabatic phase in this re-formulation, contrary to the customary understanding of the adiabatic phase as a special case of the non-adiabatic phase. Some explicit examples of geometric phases are discussed to illustrate this re-formulation.Comment: 30 pages. Some clarifying sentences have been added in abstract and in the body of the paper. A new additional reference and some typos have been corrected. To appear in Int. J. Mod. Phys.

    Entropy production rates of bistochastic strictly contractive quantum channels on a matrix algebra

    Full text link
    We derive, for a bistochastic strictly contractive quantum channel on a matrix algebra, a relation between the contraction rate and the rate of entropy production. We also sketch some applications of our result to the statistical physics of irreversible processes and to quantum information processing.Comment: 7 pages; revised version submitted to J. Phys.

    Conservation of the stress tensor in perturbative interacting quantum field theory in curved spacetimes

    Full text link
    We propose additional conditions (beyond those considered in our previous papers) that should be imposed on Wick products and time-ordered products of a free quantum scalar field in curved spacetime. These conditions arise from a simple ``Principle of Perturbative Agreement'': For interaction Lagrangians L1L_1 that are such that the interacting field theory can be constructed exactly--as occurs when L1L_1 is a ``pure divergence'' or when L1L_1 is at most quadratic in the field and contains no more than two derivatives--then time-ordered products must be defined so that the perturbative solution for interacting fields obtained from the Bogoliubov formula agrees with the exact solution. The conditions derived from this principle include a version of the Leibniz rule (or ``action Ward identity'') and a condition on time-ordered products that contain a factor of the free field ϕ\phi or the free stress-energy tensor TabT_{ab}. The main results of our paper are (1) a proof that in spacetime dimensions greater than 2, our new conditions can be consistently imposed in addition to our previously considered conditions and (2) a proof that, if they are imposed, then for {\em any} polynomial interaction Lagrangian L1L_1 (with no restriction on the number of derivatives appearing in L1L_1), the stress-energy tensor Θab\Theta_{ab} of the interacting theory will be conserved. Our work thereby establishes (in the context of perturbation theory) the conservation of stress-energy for an arbitrary interacting scalar field in curved spacetimes of dimension greater than 2. Our approach requires us to view time-ordered products as maps taking classical field expressions into the quantum field algebra rather than as maps taking Wick polynomials of the quantum field into the quantum field algebra.Comment: 88 pages, latex, no figures, v2: changes in the proof of proposition 3.

    Quantum field theory with a fundamental length: A general mathematical framework

    Full text link
    We review and develop a mathematical framework for nonlocal quantum field theory (QFT) with a fundamental length. As an instructive example, we reexamine the normal ordered Gaussian function of a free field and find the primitive analyticity domain of its n-point vacuum expectation values. This domain is smaller than the usual future tube of local QFT, but we prove that in difference variables, it has the same structure of a tube whose base is the (n-1)-fold product of a Lorentz invariant region. It follows that this model satisfies Wightman-type axioms with an exponential high-energy bound which does not depend on n, contrary to the claims in the literature. In our setting, the Wightman generalized functions are defined on test functions analytic in the complex l-neighborhood of the real space, where l is an n-independent constant playing the role of a fundamental length, and the causality condition is formulated with the use of an analogous function space associated with the light cone. In contrast to the scheme proposed by Bruning and Nagamachi [J. Math. Phys. 45 (2004) 2199] in terms of ultra-hyperfunctions, the presented theory obviously becomes local as l tends to zero.Comment: 25 pages, v2: updated to match J. Math. Phys. versio

    Cognitive stimulation therapy for people with dementia in practice: A service evaluation

    Get PDF
    Introduction Cognitive stimulation therapy is a well-recognised evidence-based cognitive psychosocial intervention for people with mild to moderate dementia. Despite increased use of the programme, little is known about its implementation in practice. Method A service evaluation of care home staff that received cognitive stimulation therapy training was conducted, and on-going support to deliver the programme in practice was provided. Outcome measures collected at baseline and 6 month follow up included sense of competence, learning transfer, dementia knowledge, and approaches to dementia. Attendance records were also collected. Results Ten out of 12 care homes attempted to deliver the cognitive stimulation therapy programme after receiving training and support. Overall, a high number of sessions were delivered. In addition, the staff members demonstrated significant improvements in positive approaches to dementia care and sense of competence. Conclusions This article reports encouraging findings of training and outreach support with demonstrated improvements in staff outcomes and successful implementation of the cognitive stimulation therapy programme. These results support the current evidence base supporting the use of cognitive stimulation therapy in routine care. This is relevant to occupational therapy as the profession plays a crucial part in the implementation of psychosocial interventions for dementia in practice

    Wedge-Local Quantum Fields on a Nonconstant Noncommutative Spacetime

    Full text link
    Within the framework of warped convolutions we deform the massless free scalar field. The deformation is performed by using the generators of the special conformal transformations. The investigation shows that the deformed field turns out to be wedge-local. Furthermore, it is shown that the spacetime induced by the deformation with the special conformal operators is nonconstant noncommutative. The noncommutativity is obtained by calculating the deformed commutator of the coordinates

    Comment on "Fermionic entanglement ambiguity in noninertial frames"

    Full text link
    In this comment we show that the ambiguity of entropic quantities calculated in Physical Review A 83, 062323 (2011) for fermionic fields in the context of Unruh effect is not related to the properties of anticommuting fields, as claimed in Physical Review A 83, 062323 (2011), but rather to wrong mathematical manipulations with them and not taking into account a fundamental superselection rule of quantum field theory.Comment: To appear in Physical Review A. Some of the problems discussed in this comment can also be found in other previously published papers studying the Unruh effect for fermions (in the context of quantum information theory). An extended version of the comment can be found here http://arxiv.org/abs/1108.555

    A New Derivation of the CPT and Spin-Statistics Theorems in Non-Commutative Field Theories

    Full text link
    We propose an alternative axiomatic description for non-commutative field theories (NCFT) based on some ideas by Soloviev to nonlocal quantum fields. The local commutativity axiom is replaced by the weaker condition that the fields commute at sufficiently large spatial separations, called asymptotic commutativity, formulated in terms of the theory of analytic functionals. The question of a possible violation of the CPT and Spin-Statistics theorems caused by nonlocality of the commutation relations [x^μ,x^ν]=iθμν[\hat{x}_\mu,\hat{x}_\nu]=i\theta_{\mu\nu} is investigated. In spite of this inherent nonlocality, we show that the modification aforementioned is sufficient to ensure the validity of these theorems for NCFT. We restrict ourselves to the simplest model of a scalar field in the case of only space-space non-commutativity.Comment: The title is new, and the analysis in the manuscript has been made more precise. This revised version is to be published in J.Math.Phy
    • …
    corecore