38 research outputs found

    A Framework for Quality K-12 Engineering Education: Research and Development

    Get PDF
    Recent U.S. national documents have laid the foundation for highlighting the connection between science, technology, engineering and mathematics at the K-12 level. However, there is not a clear definition or a well-established tradition of what constitutes a quality engineering education at the K-12 level. The purpose of the current work has been the development of a framework for describing what constitutes a quality K-12 engineering education. The framework presented in this paper is the result of a research project focused on understanding and identifying the ways in which teachers and schools implement engineering and engineering design in their classrooms. The development of the key indicators that are included in the framework were determined based on an extensive review of the literature, established criteria for undergraduate and professional organizations, document content analysis of state academic content standards in science, mathematics, and technology, and in consultation with experts in the fields of engineering and engineering education. The framework is designed to be used as a tool for evaluating the degree to which academic standards, curricula, and teaching practices address the important components of a quality K-12 engineering education. Additionally, this framework can be used to inform the development and structure of future K-12 engineering and STEM education standards and initiatives

    Fluid balance and phase angle as assessed by bioelectrical impedance analysis in critically ill patients:a multicenter prospective cohort study

    Get PDF
    Background: Bioelectrical impedance analysis (BIA) is a validated method to assess body composition in persons with fluid homeostasis and reliable body weight. This is not the case during critical illness. The raw BIA markers resistance, reactance, phase angle, and vector length are body weight independent. Phase angle reflects cellular health and has prognostic significance. We aimed to assess the course of phase angle and vector length during intensive care unit (ICU) admission, and determine the relation between their changes (Δ) and changes in body hydration. Methods: A prospective, dual-center observational study of adult ICU patients was conducted. Univariate and multivariable regression analyses were performed, including reactance as a marker of cellular mass and integrity and total body water according to the Biasioli equation (TBWBiasioli) and fluid balance as body weight independent markers of hydration. Results: One hundred and fifty-six ICU patients (mean ± SD age 62.5 ± 14.5 years, 67% male) were included. Between days 1 and 3, there was a significant decrease in reactance/m (−2.6 ± 6.0 Ω), phase angle (−0.4 ± 1.1°), and vector length (−12.2 ± 44.3 Ω/m). Markers of hydration significantly increased. Δphase angle and Δvector length were both positively related to Δreactance/m (r2 = 0.55, p < 0.01; r2 = 0.38, p < 0.01). Adding ΔTBWBiasioli as explaining factor strongly improved the association between Δphase angle and Δreactance/m (r2 = 0.73, p < 0.01), and Δvector length and Δreactance/m (r2 = 0.77, p < 0.01). Conclusions: Our results show that during critical illness, changes in phase angle and vector length partially reflect changes in hydration

    Correction

    No full text

    Design and Development of a Gossamer Sail System for Deorbiting in Low Earth Orbit

    Get PDF
    The accumulation of space debris in low Earth orbits poses an increasing threat of collisions and damage to spacecraft. As a low-cost solution to the space debris problem the Gossamer Deorbiter proposed herein is designed as a scalable stand-alone system that can be attached to a low-to-medium mass host satellite for end-of-life disposal from low Earth orbit. It consists of a 5 m by 5 m square solar/drag sail that uses four bistable carbon fiber booms for deployment and support. Prior to deployment of the gossamer structure, a telescopic enclosure system is used to displace the sail from the host craft in order to extend the sail without hindrance from the host peripherals, and also provide passive stabilization. The principal advantage of an entirely passive operational mode allows the drag augmentation system to act as a "fail-safe" device that would activate if the spacecraft suffers a catastrophic failure. Several scenarios are analyzed to study the potential application and performance of the system to current and future missions. A detailed breakdown of the mechanical subsystems of the Gossamer Deorbiter is presented, as well as the characterization process of the deployable booms and sail membrane and the full qualification testing campaign at component and system levels. Finally, the performance scalability of the concept is analyzed. © 2014 IAA. Published by Elsevier Ltd. All rights reserved
    corecore