213 research outputs found

    Lumbale RĂŒckenoperationen: Indikationen und deren Komplikationen

    Full text link

    Implications of changes in seasonal mean temperature for agricultural production systems: three case studies

    Get PDF
    - The performance of dairy cows will suffer from elevated temperatures, reflecting the extent and uncertainty of projected warming in different scenarios, with a marked increase in heat stress for non-intervention scenarios (A1B and A2) toward the end of the century. This calls for the adoption of protective measures in the management of indoor and outdoor animal environments. - A substantial risk of a prolonged pest control season for the codling moth (an apple pest) is projected toward the end of the century for Northern Switzerland sites, and mid-century for the Ticino. Timely preventive programs are anticipated to represent a key ingredient of adaptation to changing risks from agricultural pests. - Results suggest that in the near future viticulture could benefit from increasing temperatures as a wider range of grape varieties could be grown. Toward the end of the century negative impacts from extreme temperatures are nevertheless expected to become important

    Operator independent reliability of direct augmented reality navigated pedicle screw placement and rod bending

    Full text link
    Background AR based navigation of spine surgeries may not only provide accurate surgical execution but also operator independency by compensating for potential skill deficits. “Direct” AR-navigation, namely superposing trajectories on anatomy directly, have not been investigated regarding their accuracy and operator's dependence. Purpose of this study was to prove operator independent reliability and accuracy of both AR assisted pedicle screw navigation and AR assisted rod bending in a cadaver setting. Methods Two experienced spine surgeons and two biomedical engineers (laymen) performed independently from each other pedicle screw instrumentations from L1-L5 in a total of eight lumbar cadaver specimens (20 screws/operator) using a fluoroscopy-free AR based navigation method. Screw fitting rods from L1 to S2-Ala-Ileum were bent bilaterally using an AR based rod bending navigation method (4 rods/operator). Outcome measures were pedicle perforations, accuracy compared to preoperative plan, registration time, navigation time, total rod bending time and operator's satisfaction for these procedures. Results 97.5% of all screws were safely placed (<2 mm perforation), overall mean deviation from planned trajectory was 6.8±3.9°, deviation from planned entry point was 4±2.7 mm, registration time per vertebra was 2:25 min (00:56 to 10:00 min), navigation time per screw was 1:07 min (00:15 to 12:43 min) rod bending time per rod was 4:22 min (02:07 to 10:39 min), operator's satisfaction with AR based screw and rod navigation was 5.38±0.67 (1 to 6, 6 being the best rate). Comparison of surgeons and laymen revealed significant difference in navigation time (1:01 min; 00:15 to 3:00 min vs. 01:37 min; 00:23 to 12:43 min; p = 0.004, respectively) but not in pedicle perforation rate. Conclusions Direct AR based screw and rod navigation using a surface digitization registration technique is reliable and independent of surgical experience. The accuracy of pedicle screw insertion in the lumbar spine is comparable with the current standard techniques

    Augmented reality navigation for spinal pedicle screw instrumentation using intraoperative 3D imaging

    Get PDF
    BACKGROUND CONTEXT Due to recent developments in augmented reality with head-mounted devices, holograms of a surgical plan can be displayed directly in the surgeon's field of view. To the best of our knowledge, three dimensional (3D) intraoperative fluoroscopy has not been explored for the use with holographic navigation by head-mounted devices in spine surgery. PURPOSE To evaluate the surgical accuracy of holographic pedicle screw navigation by head-mounted device using 3D intraoperative fluoroscopy. STUDY DESIGN In this experimental cadaver study, the accuracy of surgical navigation using a head-mounted device was compared with navigation with a state-of-the-art pose-tracking system. METHODS Three lumbar cadaver spines were embedded in nontransparent agar gel, leaving only commonly visible anatomy in sight. Intraoperative registration of preoperative planning was achieved by 3D fluoroscopy and fiducial markers attached to lumbar vertebrae. Trackable custom-made drill sleeve guides enabled real-time navigation. In total, 20 K-wires were navigated into lumbar pedicles using AR-navigation, 10 K-wires by the state-of-the-art pose-tracking system. 3D models obtained from postexperimental CT scans were used to measure surgical accuracy. MF is the founder and shareholder of Incremed AG, a Balgrist University Hospital start-up focusing on the development of innovative techniques for surgical executions. The other authors declare no conflict of interest concerning the contents of this study. No external funding was received for this study. RESULTS No significant difference in accuracy was measured between AR-navigated drillings and the gold standard with pose-tracking system with mean translational errors between entry points (3D vector distance; p=.85) of 3.4±1.6 mm compared with 3.2±2.0 mm, and mean angular errors between trajectories (3D angle; p=.30) of 4.3°±2.3° compared with 3.5°±1.4°. CONCLUSIONS In conclusion, holographic navigation by use of a head-mounted device achieve accuracy comparable to the gold standard of high-end pose-tracking systems. CLINICAL SIGNIFICANCE These promising results could result in a new way of surgical navigation with minimal infrastructural requirements but now have to be confirmed in clinical studies

    Posterior spinal instrumentation and decompression with or without cross-link?

    Full text link
    ackground: Posterior lumbar instrumentation requires sufficient primary stiffness to ensure bony fusion and to avoid pseudarthrosis, screw loosening, or implant failure. To enhance primary construct stiffness, transverse cross-link (CL) connectors attached to the vertical rods can be used. Their effect on the stability of a spinal instrumentation with simultaneous decompression is yet not clear. This study aimed to evaluate the impact of CL augmentation on single-level lumbar instrumentation stiffness after gradual decompression procedures. Methods: Seventeen vertebral segments (6 L1/2, 6 L3/4, 5 L5/S1) of 12 fresh-frozen human cadavers were instrumented with a transpedicular screw-rod construct following the traditional pedicle screw trajectory. Range of motion (ROM) of the segments was sequentially recorded before and after four procedures: (A) instrumented before decompression, (B) instrumented after unilateral laminotomy, (C) instrumented after midline bilateral laminotomy, and (D) instrumented after unilateral facetectomy (with transforaminal lumbar interbody fusion [TLIF]). Each test was performed with and without CL augmentation. The motion between the cranial and caudal vertebrae was evaluated in all six major loading directions: flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression/distraction (AC). Results: ROM was significantly reduced with CL augmentation in AR by Δ0.03-0.18° (7-12%) with a significantly higher ROM reduction after more extensive decompression. Furthermore, slight reductions in FE and LB were observed; these reached statistical significance for FE after facetectomy and TLIF insertion only (Δ0.15; 3%). The instrumentation levels did not reveal any subgroup differences. Conclusion: CL augmentation reduces AR-ROM by 7-12% in single-level instrumentation of the lumbar spine, with the effect increasing along with the extensiveness of the decompression technique. In light of the discrete absolute changes, CL augmentation may be warranted for highly unstable vertebral segments rather than for standard single-level posterior spinal fusion and decompression. Keywords: Biomechanical; Cross-connector; Cross-link; Instrumentation; Segmental stability; Spine; lumbar

    Starting or Changing Therapy - A Prospective Study Exploring Antiretroviral Decision-Making

    Get PDF
    Background:: When to start or change antiretroviral treatment against HIV infection is of major importance. Patients' readiness is considered a major factor influencing such treatment decisions, in particular because no objective, absolute time point when to start antiretroviral therapy exists. We aimed at evaluating patients' readiness to start or change antiretroviral therapy (ART). Patients and Methods:: HIV-infected patients starting or changing ART between July 2002 and February 2003, treating physicians and nurses participated in this prospective, observational multicenter study. We assessed shared decision-making including qualitative aspects, expected treatment decisions and treatment status after 3 months. Results:: 75 patients were included. Of 34 patients for whom starting ART was considered, 27 (79%) indicated that they were willing to start treatment. After 3 months, 21 of 27 (78%) actually started therapy, six did not. Patients with depression were less likely to be ready for ART (p < 0.05). Of 41 patients for whom changing ART was considered, 35 (85%) indicated that they were willing to change treatment. Of the latter 35 patients, 33 (94%) finally changed ART within 3 months. Physicians and nurses were too optimistic in predicting the start or change of ART. The main reason to start or change ART was the sole recommendation of the physician (52% in those starting, 61% in those changing ART). Patients mainly judged the decision as shared and were very satisfied (71%) with the process. Qualitative findings revealed the importance of a dialectic decisionmaking, described with two categories: "dealing with oneself and others”‚ and "understanding and being understood.” Conclusion:: Patients mainly shared the decision made during consultation. Although physicians have an essential role concerning ART, patients, physicians, and nurses all contribute to the decision. Qualitative findings indicate the importance for health-care providers to include patients' expertise and contribution

    Increased cranio-caudal spinal cord oscillations are the cardinal pathophysiological change in degenerative cervical myelopathy.

    Get PDF
    INTRODUCTION Degenerative cervical myelopathy (DCM) is the most common cause of non-traumatic incomplete spinal cord injury, but its pathophysiology is poorly understood. As spinal cord compression observed in standard MRI often fails to explain a patient's status, new diagnostic techniques to assess DCM are one of the research priorities. Minor cardiac-related cranio-caudal oscillations of the cervical spinal cord are observed by phase-contrast MRI (PC-MRI) in healthy controls (HCs), while they become pathologically increased in patients suffering from degenerative cervical myelopathy. Whether transversal oscillations (i.e., anterior-posterior and right-left) also change in DCM patients is not known. METHODS We assessed spinal cord motion simultaneously in all three spatial directions (i.e., cranio-caudal, anterior-posterior, and right-left) using sagittal PC-MRI and compared physiological oscillations in 18 HCs to pathological changes in 72 DCM patients with spinal canal stenosis. The parameter of interest was the amplitude of the velocity signal (i.e., maximum positive to maximum negative peak) during the cardiac cycle. RESULTS Most patients suffered from mild DCM (mJOA score 16 (14-18) points), and the majority (68.1%) presented with multisegmental stenosis. The spinal canal was considerably constricted in DCM patients in all segments compared to HCs. Under physiological conditions in HCs, the cervical spinal cord oscillates in the cranio-caudal and anterior-posterior directions, while right-left motion was marginal [e.g., segment C5 amplitudes: cranio-caudal: 0.40 (0.27-0.48) cm/s; anterior-posterior: 0.18 (0.16-0.29) cm/s; right-left: 0.10 (0.08-0.13) cm/s]. Compared to HCs, DCM patients presented with considerably increased cranio-caudal oscillations due to the cardinal pathophysiologic change in non-stenotic [e.g., segment C5 amplitudes: 0.79 (0.49-1.32) cm/s] and stenotic segments [.g., segment C5 amplitudes: 0.99 (0.69-1.42) cm/s]). In contrast, right-left [e.g., segment C5 amplitudes: non-stenotic segment: 0.20 (0.13-0.32) cm/s; stenotic segment: 0.11 (0.09-0.18) cm/s] and anterior-posterior oscillations [e.g., segment C5 amplitudes: non-stenotic segment: 0.26 (0.15-0.45) cm/s; stenotic segment: 0.11 (0.09-0.18) cm/s] remained on low magnitudes comparable to HCs. CONCLUSION Increased cranio-caudal oscillations of the cervical cord are the cardinal pathophysiologic change and can be quantified using PC-MRI in DCM patients. This study addresses spinal cord oscillations as a relevant biomarker reflecting dynamic mechanical cord stress in DCM patients, potentially contributing to a loss of function

    Role of C-reactive protein in the bone marrow of Modic type 1 changes

    Full text link
    Modic type 1 changes (MC1) are vertebral bone marrow lesions and associate with low back pain. Increased serum C-reactive protein (CRP) has inconsistently been associated with MC1. We aimed to provide evidence for a role of CRP in the tissue pathophysiology of MC1 bone marrow. From thirteen MC1 patients undergoing spinal fusion at MC1 levels, vertebral bone marrow aspirates from MC1 and intra-patient control bone marrow were taken. Bone marrow CRP, IL-1, and IL-6 were measured with enzyme-linked immunosorbent assays; lactate dehydrogenase (LDH) was measured with a colorimetric assay. CRP, IL-1, and IL-6 were compared between MC1 and control bone marrow. Bone marrow CRP was correlated with blood CRP and with bone marrow IL-1, IL-6, and LDH. CRP expression by marrow cells was measured with PCR. Increased CRP in MC1 bone marrow (mean difference: +0.22 mg CRP/g protein, 95% CI [-0.04, 0.47], p=0.088) correlated with blood CRP (r=0.69, p=0.018), with bone marrow IL-1ÎČ (ρ=0.52, p=0.029) and IL-6 (ρ=0.51, p=0.031). Marrow cells did not express CRP. Increased LDH in MC1 bone marrow (143.1%, 95% CI [110.7%, 175.4%], p=0.014) indicated necrosis. A blood CRP threshold of 3.2 mg/L detected with 100% accuracy increased CRP in MC1 bone marrow. In conclusion, the association of CRP with inflammatory and necrotic changes in MC1 bone marrow provides evidence for a pathophysiological role of CRP in MC1 bone marrow. This article is protected by copyright. All rights reserved

    Subseasonal hydrometeorological ensemble predictions in small- and medium-sized mountainous catchments: benefits of the NWP approach

    Get PDF
    Traditional ensemble streamflow prediction (ESP) systems are known to provide a valuable baseline to predict streamflows at the subseasonal to seasonal timescale. They exploit a combination of initial conditions and past meteorological observations, and can often provide useful forecasts of the expected streamflow in the upcoming month. In recent years, numerical weather prediction (NWP) models for subseasonal to seasonal timescales have made large progress and can provide added value to such a traditional ESP approach. Before using such meteorological predictions two major problems need to be solved: the correction of biases, and downscaling to increase the spatial resolution. Various methods exist to overcome these problems, but the potential of using NWP information and the relative merit of the different statistical and modelling steps remain open. To address this question, we compare a traditional ESP system with a subseasonal hydrometeorological ensemble prediction system in three alpine catchments with varying hydroclimatic conditions and areas between 80 and 1700&thinsp;km2. Uncorrected and corrected (pre-processed) temperature and precipitation reforecasts from the ECMWF subseasonal NWP model are used to run the hydrological simulations and the performance of the resulting streamflow predictions is assessed with commonly used verification scores characterizing different aspects of the forecasts (ensemble mean and spread). Our results indicate that the NWP-based approach can provide superior prediction to the ESP approach, especially at shorter lead times. In snow-dominated catchments the pre-processing of the meteorological input further improves the performance of the predictions. This is most pronounced in late winter and spring when snow melting occurs. Moreover, our results highlight the importance of snow-related processes for subseasonal streamflow predictions in mountainous regions.</p
    • 

    corecore