15 research outputs found
Burial Depth and Stolon Internode Length Independently Affect Survival of Small Clonal Fragments
Disturbance can fragment plant clones into different sizes and unstabilize soils to different degrees, so that clonal fragments of different sizes can be buried in soils at different depths. As a short-term storage organ, solon internode may help fragmented clones of stoloniferous plants to withstand deeper burial in soils. We address (1) whether burial in soils decreases survival and growth of small clonal fragments, and (2) whether increasing internode length increases survival and growth of small fragments under burial. We conducted an experiment with the stoloniferous, invasive herb Alternanthera philoxeroides, in which single-node fragments with stolon internode of 0, 2, 4 and 8 cm were buried in soils at 0, 2, 4 and 8 cm depth, respectively. Increasing burial depth significantly reduced survival of the A. philoxeroides plants and increased root to shoot ratio and total stolon length, but did not change growth measures. Increasing internode length significantly increased survival and growth measures, but there was no interaction effect with burial depth on any traits measured. These results indicate that reserves stored in stolon internodes can contribute to the fitness of the A. philoxeroides plants subject to disturbance. Although burial reduced the regeneration capacity of the A. philoxeroides plants, the species may maintain the fitness by changing biomass allocation and stolon length once it survived the burial. Such responses may play an important role for A. philoxeroides in establishment and invasiveness in frequently disturbed habitats
Survival of the thickest? Impacts of extreme wave-forcing on marsh seedlings are mediated by species morphology
Although tidal marshes are known for their coastal defense function during storm surges, the impact of extreme wave forcing on tidal marsh development is poorly understood. Seedling survival in the first season after germination, which may involve exposure to extreme wave events, is crucial for the natural establishment and human restoration of marshes. We hypothesize that species-specific plant traits plays a significant role in seedlings survival and response to wave induced stress, i.e., through stem bending and uprooting. To test this hypothesis, seedlings of pioneer species (Bolboschoenus maritimus, Schoenoplectus tabernaemontani, Spartina anglica, and Puccinellia maritima) with contrasting biophysical traits were placed in the Large Wave Flume in Hannover (Germany) and exposed to storm wave conditions. Seedlings of P. maritima and S. anglica experienced a lower loss rate and bending angle after wave exposure compared to S. tabernaemontani and especially B. maritimus. The higher loss rates of B. maritimus and S. tabernaemontani result from deeper scouring around the stem base. Scouring depth was larger around stems of greater diameter and higher resistance to bending. Here, B. maritimus and S. tabernaemontani have both thicker and stiffer stems than S. anglica and P. maritima. Our results show that especially seedlings with thicker stems suffer from erosion and scouring, and have the highest risk of being lost during extreme wave events. This implies that for successful seedling establishment and eventually the establishment of a mature tidal marsh vegetation, the species composition and their capacity to cope with storm wave disturbances is crucial