232 research outputs found

    HER2 testing in breast cancer: Opportunities and challenges

    Get PDF
    Human epidermal growth factor receptor 2 (HER2) is overexpressed in 15-25% of breast cancers, usually as a result of HER2 gene amplification. Positive HER2 status is considered to be an adverse prognostic factor. Recognition of the role of HER2 in breast cancer growth has led to the development of anti-HER2 directed therapy, with the humanized monoclonal antibody trastuzumab (Herceptin (R)) having been approved for the therapy of HER2-positive metastatic breast cancer. Clinical studies have further suggested that HER2 status can provide important information regarding success or failure of certain hormonal therapies or chemotherapies. As a result of these developments, there has been increasing demand to perform HER2 testing on current and archived breast cancer specimens. This article reviews the molecular background of HER2 function, activation and inhibition as well as current opinions concerning its role in chemosensitivity and interaction with estrogen receptor biology. The different tissue-based assays used to detect HER2 amplification and overexpression are discussed with respect to their advantages and disadvantages, when to test (at initial diagnosis or pre-treatment), where to test (locally or centralized) and the need for quality assurance to ensure accurate and valid testing results

    c-erbB-2 is not a major factor in the development of colorectal cancer

    Get PDF
    We have investigated c-erbB-2 protein expression in a large cohort of well-characterized colorectal tumours, and in a subset of lymph node metastases. We have also evaluated a Val655Ile single nucleotide polymorphism, which is associated with an increased risk of breast cancer, in a subset of the colorectal cancer patients and in healthy control subjects. Immunohistochemical studies revealed that while 81.8% of tumours expressed c-erbB-2, in the majority of cases equivalent levels of c-erb-B2 were seen in adjacent normal mucosa. Colon tumours were significantly more likely to express c-erbB-2 than rectal tumours (P=0.015). Only 52.4% of the metastases displayed staining patterns concordant with their primary tumour, indicating that determination of c-erbB-2 protein in colorectal tumours cannot predict the status of lymph node metastases. PCR–RFLP analysis of the Val655Ile single nucleotide polymorphism demonstrated that allele frequencies were identical between colorectal cancer patients and a control group of Caucasian subjects (Ile=0.80 and Val=0.20 in each case), indicating that it is not related to the risk of developing colorectal cancer in this population. Furthermore, there was no relationship between c-erbB-2 protein expression and gene polymorphism (P=0.58). In terms of prognosis, no association was seen between either c-erbB-2 protein expression or the presence of the Val allele and patient survival (P>0.05 in each case), suggesting that c-erbB-2 is not a prognostic marker in colorectal cancer

    A human, compact, fully functional anti-ErbB2 antibody as a novel antitumour agent

    Get PDF
    A new human, compact antibody was engineered by fusion of a human, antitumour ErbB2-directed scFv with a human IgG1 Fc domain. Overexpression of the ErbB2 receptor is related to tumour aggressiveness and poor prognosis. This new immunoagent meets all criteria for a potential anticancer drug: it is human, hence poorly or not immunogenic; it binds selectively and with high affinity to target cells, on which it exerts an effective and selective antiproliferative action, including both antibody-dependent and complement-dependent cytotoxicity; it effectively inhibits tumour growth in vivo. Its compact molecular size should provide for an efficient tissue penetration, yet suitable to a prolonged serum half-life

    Oncogenic ERBB3 Mutations in Human Cancers

    Get PDF
    SummaryThe human epidermal growth factor receptor (HER) family of tyrosine kinases is deregulated in multiple cancers either through amplification, overexpression, or mutation. ERBB3/HER3, the only member with an impaired kinase domain, although amplified or overexpressed in some cancers, has not been reported to carry oncogenic mutations. Here, we report the identification of ERBB3 somatic mutations in ∼11% of colon and gastric cancers. We found that the ERBB3 mutants transformed colonic and breast epithelial cells in a ligand-independent manner. However, the mutant ERBB3 oncogenic activity was dependent on kinase-active ERBB2. Furthermore, we found that anti-ERBB antibodies and small molecule inhibitors effectively blocked mutant ERBB3-mediated oncogenic signaling and disease progression in vivo

    Recombinant humanised anti-HER2/neu antibody (Herceptin®) induces cellular death of glioblastomas

    Get PDF
    Glioblastoma multiforme (GBM) remains the most devastating primary tumour in neuro-oncology. Targeting of the human epithelial receptor type 2 (HER2)-neu receptor by specific antibodies is a recent well-established therapy for breast tumours. Human epithelial receptor type 2/neu is a transmembrane tyrosine/kinase receptor that appears to be important for the regulation of cancer growth. Human epithelial receptor type 2/neu is not expressed in the adult central nervous system, but its expression increases with the degree of astrocytoma anaplasia. The specificity of HER2/neu for tumoral astrocytomas leads us to study in vitro treatment of GBM with anti-HER2/neu antibody. We used human GBM cell lines expressing HER2/neu (A172 express HER2/neu more than U251MG) or not (U87MG) and monoclonal humanised antibody against HER2/neu (Herceptin®). Human epithelial receptor type 2/neu expression was measured by immunohistochemistry and flow cytometry. Direct antibody effect, complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity were evaluated by different cytometric assays. We have shown, for the first time, the ability of anti-HER2/neu antibodies to induce apoptosis and cellular-dependent cytotoxicity of HER2/neu-expressing GBM cell lines. The results decreased from A172 to U251 and were negative for U87MG, in accordance with the decreasing density of HER2/neu receptors
    corecore