2,386 research outputs found

    NLO evolution kernels: Monte Carlo versus MSbar

    Full text link
    We investigate the differences between the NLO evolution kernels in the Curci-Furmanski-Petronzio (CFP) and Monte Carlo (MC) factorization schemes for the non-singlet case. We show the origin of these differences and present them explicitly. We examine the influence of the choice of the factorization scale in the MC scheme (given by the upper phase space limit) on the evolution kernels in this scheme.Comment: Contribution to Cracow Epiphany Conference 201

    Exclusive Monte Carlo modelling of NLO DGLAP evolution

    Full text link
    The next-to-leading order (NLO) evolution of the parton distribution functions (PDFs) in QCD is a common tool in the lepton-hadron and hadron-hadron collider data analysis. The standard NLO DGLAP evolution is formulated for inclusive (integrated) PDFs and done using inclusive NLO kernels. We report here on the ongoing project, called KRKMC, in which NLO DGLAP evolution is performed for the exclusive multiparton (fully unintegrated) distributions (ePDFs) with the help of the exclusive kernels. These kernels are calculated within the two-parton phase space for the non-singlet evolution, using Curci-Furmanski-Petronzio factorization scheme. The multiparton distribution, with multiple use of the exclusive NLO kernels, is implemented in the Monte Carlo program simulating multi-gluon emission from single quark emitter. High statistics tests (1010\sim 10^{10} events) show that the new scheme works perfectly well in practice and, at the inclusive (integrated) level, is equivalent with the traditional inclusive NLO DGLAP evolution. Once completed, this new technique is aimed as a building block for the new more precise NLO parton shower Monte Carlo, for W/Z production at LHC and for ep scattering, as well as a starting point for other perturbative QCD based Monte Carlo projects.Comment: Contribution RADCOR 2009 Int. Symposiu

    Inclusion of the QCD next-to-leading order corrections in the quark-gluon Monte Carlo shower

    Full text link
    Methodology of including QCD NLO corrections in the quark--gluon Monte Carlo shower is outlined. The work concentrates on two issues: (i) constructing leading order (LO) parton shower Monte Carlo from scratch, such that it rigorously extends collinear factorization into the exclusive (fully unintegrated) one which we call the Monte Carlo factorization scheme; (ii) introducing next-to-leading-order (NLO) corrections to the hard process in this new environment. The presented solution is designed to be extended to the full NLO level Monte Carlo, including NLO corrections not only in the hard process but in the whole shower. The issue of the difference between the factorization scheme implemented in the Monte Carlo (MC) solution and the standard MSbar scheme is addressed. The principal MC implementation is designed for the electroweak boson production process at the LHC, but in order to discuss universality -- process independence, the deep inelastic lepton--hadron scaterring is also brought into the MC framework.Comment: 28 pages, 6 figures, updated to match journal versio

    Colour coherence of soft gluons in the fully unintegrated NLO singlet kernels

    Full text link
    Feynman diagrams with two real partons contributing to the next-to-leading-order singlet gluon-quark DGLAP kernel are analysed. The infra-red singularities of unintegrated distributions are examined numerically. The analytical formulae are also given in some cases. The role of the colour coherence effects is found to be crucial for cancellations of the double- and single-logarithmic infra-red singularities.Comment: 9 pages, 6 figure

    Ab initio study of the relationship between spontaneous polarization and p-type doping in quasi-freestanding graphene on H-passivated SiC surfaces

    Full text link
    Quasi-free standing graphene (QFG) obtained by the intercalation of a hydrogen layer between a SiC surface and the graphene is recognized as an excellent candidate for the development of graphene based technology. In addition, the recent proposal of a direct equivalence between the pp-type doping typically found for these systems and the spontaneous polarization (SP) associated to the particular SiC polytype, opens the possibility of tuning the number of carriers in the Dirac cones without the need of external gate voltages. However, first principles calculations which could confirm at the atomic scale the effect of the SP are lacking mainly due to the difficulty of combining a bulk property such as the SP with the surface confined graphene doping. Here we develop an approach based on standard density functional theory (DFT) slab calculations in order to quantify the effect of the SP on the QFG doping level. First, we present an accurate scheme to estimate the SPs by exploiting the dependence of the slab's dipole moment with its thickness. Next, and in order to circumvent the DFT shortcomings associated to polar slab geometries, a double gold layer is attached at the C-terminated bottom of the slab which introduces a metal induced gap state that pins the chemical potential inside the gap thus allowing a meaningful comparison of the QFG dopings among different polytypes. Furthermore, the slab dipole can be removed after adjusting the Au-Au interlayer distances. Our results confirm that the SP does indeed induce a substantial p-doping of the Dirac cones which can be as large as a few hundreds of meV depending on the hexagonality of the polytype. The evolution of the doping with the slab thickness reveals that several tens of SiC bilayers are required to effectively remove the depolarization field and recover the macroscopic regime whereby the graphene doping should equal the SP
    corecore