18 research outputs found

    Time-Series Photometry of M67: W UMa Systems, Blue Stragglers, and Related Systems

    Get PDF
    We present an analysis of over 2200 V images taken on 14 nights at the Mt. Laguna 1 m telescope of the open cluster M67. Our observations overlap but extend beyond the field analyzed by Gilliland et al. (1991), and complement data recently published by van den Berg et al. (2002) and Stassun et al. (2002). We show variability in the light curves of all 4 of the known W UMa variables on timescales ranging from a day to decades (for AH Cnc). We have modeled the light curve of AH Cnc, and the total eclipses allow us to determine q = 0.16 +0.03/-0.02 and i = 86 +4/-8 degrees. The position of this system near the turnoff of M67 makes it useful for constraining the turnoff mass for the cluster. We have also detected two unusual features in the light curve of AH Cnc that may be caused by prominences. We have also monitored cluster blue stragglers for variability, and we present evidence hinting at low level variations in the stragglers S752, S968, and S1263, and we place limits on the variability of a number of other cluster blue stragglers. Finally, we provide photometry of the sub-subgiant branch star S1063 showing variability on timescales similar to the orbital period, while the ``red straggler'' S1040 shows evidence of an unexplained drop in brightness at phases corresponding to the passage of the white dwarf in front of the giant.Comment: 44 pages, 16 figures, AASTeX, accepted for A

    Shedding Light on the Galaxy Luminosity Function

    Full text link
    From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift - known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF. Over the last seventy years there have been numerous sophisticated statistical approaches devised to tackle these issues; all have advantages -- but not one is perfect. This review takes a broad historical look at the key statistical tools that have been developed over this period, discussing their relative merits and highlighting any significant extensions and modifications. In addition, the more generalised methods that have emerged within the last few years are examined. These methods propose a more rigorous statistical framework within which to determine the LF compared to some of the more traditional methods. I also look at how photometric redshift estimations are being incorporated into the LF methodology as well as considering the construction of bivariate LFs. Finally, I review the ongoing development of completeness estimators which test some of the fundamental assumptions going into LF estimators and can be powerful probes of any residual systematic effects inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy & Astrophysics Review. This version: bring in line with A&AR format requirements, also minor typo corrections made, additional citations and higher rez images adde

    The origin and abundances of the chemical elements

    Full text link

    Pressure evolution of the structure of

    No full text
    The structural features of the ammoniated (NH3)K3C60 fulleride are studied by synchrotron X-ray powder diffraction as a function of pressure to 6.7 GPa. A superstructure appears at ~1 GPa as a result of orientational ordering of both the C60 and K+-NH3 units (orthorhombic symmetry, space group Fddd). The pressure evolution of the lattice constants reveals a highly compressible, strongly anisotropic structure. The centre-to-centre interfullerene separations of ~10.40 Åin the basal plane are comparable to those in the superconducting cubic analogue, RbCs2C60 and evidently sufficiently short to drive the system superconducting, despite its low crystal symmetry
    corecore