45 research outputs found

    Neural progenitor cells from an adult patient with fragile X syndrome

    Get PDF
    BACKGROUND: Currently, there is no adequate animal model to study the detailed molecular biochemistry of fragile X syndrome, the leading heritable form of mental impairment. In this study, we sought to establish the use of immature neural cells derived from adult tissues as a novel model of fragile X syndrome that could be used to more fully understand the pathology of this neurogenetic disease. METHODS: By modifying published methods for the harvest of neural progenitor cells from the post-mortem human brain, neural cells were successfully harvested and grown from post-mortem brain tissue of a 25-year-old adult male with fragile X syndrome, and from brain tissue of a patient with no neurological disease. RESULTS: The cultured fragile X cells displayed many of the characteristics of neural progenitor cells, including nestin and CD133 expression, as well as the biochemical hallmarks of fragile X syndrome, including CGG repeat expansion and a lack of FMRP expression. CONCLUSION: The successful production of neural cells from an individual with fragile X syndrome opens a new avenue for the scientific study of the molecular basis of this disorder, as well as an approach for studying the efficacy of new therapeutic agents

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Transplantation of EGF-responsive neurospheres from GFP transgenic mice into the eyes of rd mice

    No full text
    The isolation of stem cells from various regions of the central nervous system has raised the possibility of using them as a donor cell source for cell transplantation, where they offer great promise for repair of the diseased brain, spinal cord, and retina. Here, we have studied the migration, integration, and differentiation of EGF-responsive neurospheres isolated from the brains of green fluorescent protein transgenic mice and transplanted into the eyes of mature rd mice, a model of retinitis pigmentosa. While grafts of freshly isolated postnatal day 8 retina expressed many markers characteristic of mature retina (e.g. rhodopsin, protein kinase C), very few of the grafted cells migrated into host retina. EGF-responsive neurospheres, conversely, readily migrated into and integrated with the remaining host retina, but showed a very limited ability to differentiate into mature retinal neurons. While the progenitor cells used here show remarkable ability to integrate with host retina and develop some attributes of retinal cells, the failure to fully differentiate into retinal cells suggests that they already express some level of terminal commitment that precludes using them to replace lost photoreceptors. (C) 2002 Elsevier Science B.V. All rights reserved

    Modulation of Conjunctival Goblet Cell Function by Inflammatory Cytokines

    Get PDF
    Ocular surface inflammation associated with Sjögren’s syndrome is characterized by a loss of secretory function and alteration in numbers of mucin secreting goblet cells. Such changes are a prominent feature of ocular surface inflammatory diseases and are attributed to inflammation; however, the exact effect of the inflammatory cytokines on conjunctival goblet cell function remains largely unknown. In this study, we developed a primary culture of mouse goblet cells from conjunctival tissue and evaluated the effects on their function by inflammatory cytokines detected in the conjunctiva of mouse model of Sjögren’s syndrome (Thrombospondin-1 deficient mice). We found that apoptosis of goblet cells was primarily induced by TNF-α and IFN-γ. These two cytokines also inhibited mucin secretion by goblet cells in response to cholinergic stimulation, whereas IL-6 enhanced such secretion. No changes in secretory response were detected in the presence of IL-13 or IL-17. Goblet cells proliferated to varying degrees in response to all the tested cytokines with the greatest response to IL-13 followed by IL-6. Our results therefore reveal that inflammatory cytokines expressed in the conjunctiva during an ocular surface disease directly disrupt conjunctival goblet cell functions, compromising the protective function of tears, thereby contributing to ocular surface damage
    corecore