49 research outputs found

    Gastric Marginal Zone B Cell Lymphoma of the Duodenum

    Get PDF
    Small bowel lymphomas of the extranodal type occur in the young and are characteristically associated with malabsorption syndrome. We present the case of an elderly in whom there was no malabsorption and the duodenal tumor was a gastric type marginal zone B cell lymphoma also known as gastric mucosa-associated lymphoid tissue (MALT) lymphoma. A 73-year-old woman presented to the emergency room with 2 weeks of general weakness, recurrent vomiting containing food particles and abdominal distension. She had been diagnosed with diabetic gastroparesis 4 years prior. CT of the abdomen and pelvis was suggestive of gastric outlet obstruction but no evidence of pancreatic or duodenal mass. Endoscopy and biopsy of the tumor obstructing the distal first part of the duodenum confirmed a gastric marginal MALT lymphoma. The patient's symptoms improved with radiotherapy. Gastric MALT lymphoma, an extranodal lymphoma primarily described in the stomach, can also present in the small bowel and is not associated with malabsorption

    Incomplete gastric metaplasia in children with insulin-dependent diabetes mellitus and celiac disease. An ultrastructural study

    Get PDF
    BACKGROUND: The association of insulin-dependent diabetes mellitus (IDDM) and celiac disease (CD) has been widely reported in children but the relationship between the two conditions is incompletely understood. Moreover, specific studies on intestinal biopsies of patients with the association of the two diseases are still lacking. METHODS: We studied the ultrastructure of the duodenal mucosa in 12 patients with both IDDM and CD. RESULTS: All patients had either total or partial atrophy of duodenal mucosa. In seven subjects, an accumulation of electrondense granules in the apical cytoplasm of groups of enterocytes was found. In four of them, a double population of granules existed (mean diameter: 400-800 nm and 100-200 nm respectively) showing a biphasic pattern. In the other three patients, only smaller granules (100- 200 nm) were found in the enterocytes. CONCLUSIONS: The present work suggests that patients with IDDM/CD may represent a subgroup in the context of the CD population. Intestinal biopsies of such individuals often show accumulation of electrondense granules in the apical cytoplasm of enterocytes that can be interpreted as incomplete gastric metaplasia

    Development of a Noble Fouling-Resistant Membrane for Wastewater Treatment

    No full text
    Abstract: Membrane fouling is a serious matter in membrane operation that impacts the system's durability and cost. A noble fouling-resistant membrane was created to address this issue. A noble fouling-resistant membrane was made using copper oxide-graphene oxide (Cu2O-GO) and polyether sulfone. As copper has strong antimicrobial properties, the per-unit strength of graphene is the highest among the known materials in the world. The Cu2O-GO was incorporated into the polyether sulfone matrix using the phase inversion method. The effects of Cu2O-GO on the performance and antifouling properties of the membrane were investigated. The membrane structure and properties have also been characterized by using Scanning Electron Microscopy (SEM), Energy Dispersive X-Ray Spectroscopy (EDS), and Fourier-Transform Infrared Spectroscopy (FTIR). The SEM and EDX tests were carried out on the 0.1 wt %, 0.5 wt %, and 1 wt% of Cu2O membranes. Membrane performance in terms of wastewater treatment and fouling resistance of the prepared mixed matrix membranes was also studied. This project shows a new direction in the research as not many studies using Cu2O-GO has been reported worldwide

    Study the Potential of Biological Growth on Dead-end Hollow Fiber Membrane using Oilfield Effluent

    No full text
    Abstract: Oil and gas-producing countries are suffering from water resource depletion without any treatment or with technologies that have the same impact, regardless of how expensive or large a land area required. On the other hand, domestic wastewater also has many treatment technologies, and biological full cell is one of them. Using an end-of-tube hollow fiber membrane in domestic wastewater allows biological microorganisms to grout and treat the water, whereas using oil-filled water has not been studied so far. This study addresses the potential of biological growth on two different types of dead-end hollow fiber membranes by using three samples of oilfield water i.e., Membrane Aerated Biofilm Reactor OxyMem and MEMCORÂź Ultrafiltration. The Membrane Bioreactor Systems are selected for the current studies and scanning electron microscopy (SEM) is used to show the biological growth on selected types of membrane to treat the oilfield wastewater. As a result, the growth in OxyMem is better which is 54% of COD removal and 55% NT removal for 55 days, whereas MEMCOR shows comparatively less growth in SEM results with 33% of COD removal and 9% NT removal during the same period. Therefore, this confirms that both types of membranes can be used to treat oilfield water in biological cells and noticed a better performance in OxyMem compared to MEMCOR

    A Cloud-Based Software Defect Prediction System Using Data and Decision-Level Machine Learning Fusion

    No full text
    This research contributes an intelligent cloud-based software defect prediction system using data and decision-level machine learning fusion techniques. The proposed system detects the defective modules using a two-step prediction method. In the first step, the prediction is performed using three supervised machine learning techniques, including naïve Bayes, artificial neural network, and decision tree. These classification techniques are iteratively tuned until the maximum accuracy is achieved. In the second step, the final prediction is performed by fusing the accuracy of the used classifiers with a fuzzy logic-based system. The proposed fuzzy logic technique integrates the predictive accuracy of the used classifiers using eight if–then fuzzy rules in order to achieve a higher performance. In the study, to implement the proposed fusion-based defect prediction system, five datasets were fused, which were collected from the NASA repository, including CM1, MW1, PC1, PC3, and PC4. It was observed that the proposed intelligent system achieved a 91.05% accuracy for the fused dataset and outperformed other defect prediction techniques, including base classifiers and state-of-the-art ensemble techniques

    A Cloud-Based Software Defect Prediction System Using Data and Decision-Level Machine Learning Fusion

    No full text
    This research contributes an intelligent cloud-based software defect prediction system using data and decision-level machine learning fusion techniques. The proposed system detects the defective modules using a two-step prediction method. In the first step, the prediction is performed using three supervised machine learning techniques, including naïve Bayes, artificial neural network, and decision tree. These classification techniques are iteratively tuned until the maximum accuracy is achieved. In the second step, the final prediction is performed by fusing the accuracy of the used classifiers with a fuzzy logic-based system. The proposed fuzzy logic technique integrates the predictive accuracy of the used classifiers using eight if–then fuzzy rules in order to achieve a higher performance. In the study, to implement the proposed fusion-based defect prediction system, five datasets were fused, which were collected from the NASA repository, including CM1, MW1, PC1, PC3, and PC4. It was observed that the proposed intelligent system achieved a 91.05% accuracy for the fused dataset and outperformed other defect prediction techniques, including base classifiers and state-of-the-art ensemble techniques

    Nonlinear coordination strategy between renewable energy sources and fuel cells for frequency regulation of hybrid power systems

    No full text
    This study proposes an advanced control strategy for the coordination of an energy storage system (ESS) based on fuel cells (FCs) and renewable energy sources (RESs) to enhance frequency dynamic performance in hybrid power systems (HPSs). The proposed coordination control strategy is based on the nonlinear proportional-integral (NPI) controller, which increases the system's flexibility in dealing with disturbances and changing operating conditions. In addition, it improves the system's dynamic response and attempts to address system weakness caused by highly penetrating RESs. The proposed NPI controller is optimally designed using a new optimization algorithm, called dandelion optimizer (DO), whose proficiency and effectiveness are verified by comparing its performance with other well-known optimization algorithms used in the literature; particle swarm optimization (PSO), grey wolf optimization (GWO), and ant lion optimization (ALO) algorithms considering various standard objective functions. Furthermore, the proposed NPI controller performs better than other control strategies used in the literature under load/RESs fluctuations. The effectiveness of the proposed nonlinear coordination control strategy is examined and investigated through a self-contained HPS that includes a diesel generator, RESs (i.e., photovoltaic and wind power plants), battery ESS, flywheel ESS, aqua electrolyzer for hydrogen production, FCs, electric vehicles, and customer loads. The simulation results carried out by the MATLAB software demonstrate the superior performance of the proposed DO-optimized NPI controller for HPS frequency regulation, even when the power system's parameters have substantial variations. Moreover, the results revealed that the proposed strategy significantly reduces the frequency deviation by approximately 95% compared to the conventional coordination strategy based on the fixed contribution of RESs and by 90% compared to the adaptive coordination control based on the PI controller

    Amplitude scaling of a static wrinkle at an oil-air interface created by dielectrophoresis forces

    Get PDF
    Dielectrophoresis forces have been used to create a static periodic wrinkle with a sinusoidal morphology on the surface of a thin layer of 1-decanol oil. The surface deformation occurs when a voltage V is applied between adjacent coplanar strip electrodes in an interdigitated array onto which the oil film is coated. It has been shown experimentally that the peak-to-peak amplitude A of the wrinkle scales according to the functional form A∝V2 exp(-α/p) for a range of oil film thicknesses (between 15 and 50 Όm) and wrinkle pitches p (160, 240, and 320 Όm)
    corecore