1,839 research outputs found

    Thermoconvection in magnetized ferrofluids: the influence of boundaries with finite heat conductivity

    Full text link
    Realistic boundaries of finite heat conductivity Realistic boundaries of finite heat conductivity for thermoconvection in a Rayleigh-B\'enard setup with magnetized ferrofluids are investigated. A linear stability analysis of the conductive state is performed with a shooting method. It shows that the critical wave number is for any magnetic field stronly influenced by the conductivity of the boundaries. Linear as well as nonlinear coefficients of a Ginzburg Landau amplitude equation for convection shortly above the onset are evaluated as functions of the magnetic Rayleigh number, the boundary conductivities, and the fluid Prandtl number.Comment: 10 pages, 9figure

    Coarse graining of master equations with fast and slow states

    Full text link
    We propose a general method for simplifying master equations by eliminating from the description rapidly evolving states. The physical recipe we impose is the suppression of these states and a renormalization of the rates of all the surviving states. In some cases, this decimation procedure can be analytically carried out and is consistent with other analytical approaches, like in the problem of the random walk in a double-well potential. We discuss the application of our method to nontrivial examples: diffusion in a lattice with defects and a model of an enzymatic reaction outside the steady state regime.Comment: 9 pages, 9 figures, final version (new subsection and many minor improvements

    Spectroscopy of drums and quantum billiards: perturbative and non-perturbative results

    Full text link
    We develop powerful numerical and analytical techniques for the solution of the Helmholtz equation on general domains. We prove two theorems: the first theorem provides an exact formula for the ground state of an arbirtrary membrane, while the second theorem generalizes this result to any excited state of the membrane. We also develop a systematic perturbative scheme which can be used to study the small deformations of a membrane of circular or square shapes. We discuss several applications, obtaining numerical and analytical results.Comment: 29 pages, 12 figures, 7 tabl

    Kink Arrays and Solitary Structures in Optically Biased Phase Transition

    Full text link
    An interphase boundary may be immobilized due to nonlinear diffractional interactions in a feedback optical device. This effect reminds of the Turing mechanism, with the optical field playing the role of a diffusive inhibitor. Two examples of pattern formation are considered in detail: arrays of kinks in 1d, and solitary spots in 2d. In both cases, a large number of equilibrium solutions is possible due to the oscillatory character of diffractional interaction.Comment: RevTeX 13 pages, 3 PS-figure

    Scale-Free topologies and Activatory-Inhibitory interactions

    Full text link
    A simple model of activatory-inhibitory interactions controlling the activity of agents (substrates) through a "saturated response" dynamical rule in a scale-free network is thoroughly studied. After discussing the most remarkable dynamical features of the model, namely fragmentation and multistability, we present a characterization of the temporal (periodic and chaotic) fluctuations of the quasi-stasis asymptotic states of network activity. The double (both structural and dynamical) source of entangled complexity of the system temporal fluctuations, as an important partial aspect of the Correlation Structure-Function problem, is further discussed to the light of the numerical results, with a view on potential applications of these general results.Comment: Revtex style, 12 pages and 12 figures. Enlarged manuscript with major revision and new results incorporated. To appear in Chaos (2006

    Generalized Haldane Equation and Fluctuation Theorem in the Steady State Cycle Kinetics of Single Enzymes

    Full text link
    Enyzme kinetics are cyclic. We study a Markov renewal process model of single-enzyme turnover in nonequilibrium steady-state (NESS) with sustained concentrations for substrates and products. We show that the forward and backward cycle times have idential non-exponential distributions: \QQ_+(t)=\QQ_-(t). This equation generalizes the Haldane relation in reversible enzyme kinetics. In terms of the probabilities for the forward (p+p_+) and backward (pp_-) cycles, kBTln(p+/p)k_BT\ln(p_+/p_-) is shown to be the chemical driving force of the NESS, Δμ\Delta\mu. More interestingly, the moment generating function of the stochastic number of substrate cycle ν(t)\nu(t), follows the fluctuation theorem in the form of Kurchan-Lebowitz-Spohn-type symmetry. When $\lambda$ = $\Delta\mu/k_BT$, we obtain the Jarzynski-Hatano-Sasa-type equality: \equiv 1 for all tt, where νΔμ\nu\Delta\mu is the fluctuating chemical work done for sustaining the NESS. This theory suggests possible methods to experimentally determine the nonequilibrium driving force {\it in situ} from turnover data via single-molecule enzymology.Comment: 4 pages, 3 figure

    Longitudinal response functions of 3H and 3He

    Full text link
    Trinucleon longitudinal response functions R_L(q,omega) are calculated for q values up to 500 MeV/c. These are the first calculations beyond the threshold region in which both three-nucleon (3N) and Coulomb forces are fully included. We employ two realistic NN potentials (configuration space BonnA, AV18) and two 3N potentials (UrbanaIX, Tucson-Melbourne). Complete final state interactions are taken into account via the Lorentz integral transform technique. We study relativistic corrections arising from first order corrections to the nuclear charge operator. In addition the reference frame dependence due to our non-relativistic framework is investigated. For q less equal 350 MeV/c we find a 3N force effect between 5 and 15 %, while the dependence on other theoretical ingredients is small. At q greater equal 400 MeV/c relativistic corrections to the charge operator and effects of frame dependence, especially for large omega, become more important. In comparison with experimental data there is generally a rather good agreement. Exceptions are the responses at excitation energies close to threshold, where there exists a large discrepancy with experiment at higher q. Concerning the effect of 3N forces there are a few cases, in particular for the R_L of 3He, where one finds a much improved agreement with experiment if 3N forces are included.Comment: 26 pages, 9 figure

    Square Patterns and Quasi-patterns in Weakly Damped Faraday Waves

    Full text link
    Pattern formation in parametric surface waves is studied in the limit of weak viscous dissipation. A set of quasi-potential equations (QPEs) is introduced that admits a closed representation in terms of surface variables alone. A multiscale expansion of the QPEs reveals the importance of triad resonant interactions, and the saturating effect of the driving force leading to a gradient amplitude equation. Minimization of the associated Lyapunov function yields standing wave patterns of square symmetry for capillary waves, and hexagonal patterns and a sequence of quasi-patterns for mixed capillary-gravity waves. Numerical integration of the QPEs reveals a quasi-pattern of eight-fold symmetry in the range of parameters predicted by the multiscale expansion.Comment: RevTeX, 11 pages, 8 figure

    Systematic derivation of a rotationally covariant extension of the 2-dimensional Newell-Whitehead-Segel equation

    Full text link
    An extension of the Newell-Whitehead-Segel amplitude equation covariant under abritrary rotations is derived systematically by the renormalization group method.Comment: 8 pages, to appear in Phys. Rev. Letters, March 18, 199

    Unstable decay and state selection II

    Full text link
    The decay of unstable states when several metastable states are available for occupation is investigated using path-integral techniques. Specifically, a method is described which allows the probabilities with which the metastable states are occupied to be calculated by finding optimal paths, and fluctuations about them, in the weak noise limit. The method is illustrated on a system described by two coupled Langevin equations, which are found in the study of instabilities in fluid dynamics and superconductivity. The problem involves a subtle interplay between non-linearities and noise, and a naive approximation scheme which does not take this into account is shown to be unsatisfactory. The use of optimal paths is briefly reviewed and then applied to finding the conditional probability of ending up in one of the metastable states, having begun in the unstable state. There are several aspects of the calculation which distinguish it from most others involving optimal paths: (i) the paths do not begin and end on an attractor, and moreover, the final point is to a large extent arbitrary, (ii) the interplay between the fluctuations and the leading order contribution are at the heart of the method, and (iii) the final result involves quantities which are not exponentially small in the noise strength. This final result, which gives the probability of a particular state being selected in terms of the parameters of the dynamics, is remarkably simple and agrees well with the results of numerical simulations. The method should be applicable to similar problems in a number of other areas such as state selection in lasers, activationless chemical reactions and population dynamics in fluctuating environments.Comment: 28 pages, 6 figures. Accepted for publication in Phys. Rev.
    corecore