66 research outputs found

    Three-Dimensional Bioprinted Controlled Release Scaffold Containing Mesenchymal Stem/Stromal Lyosecretome for Bone Regeneration: Sterile Manufacturing and In Vitro Biological Efficacy

    Get PDF
    Recently, 3D-printed scaffolds for the controlled release of mesenchymal stem cell (MSC) freeze-dried secretome (Lyosecretome) have been proposed to enhance scaffold osteoinduction and osteoconduction; coprinting of poly(ε-caprolactone) (PCL) with alginate hydrogels allows adequate mechanical strength to be combined with the modulable kinetics of the active principle release. This study represents the feasibility study for the sterile production of coprinted scaffolds and the proof of concept for their in vitro biological efficacy. Sterile scaffolds were obtained, and Lyosecretome enhanced their colonization by MSCs, sustaining differentiation towards the bone line in an osteogenic medium. Indeed, after 14 days, the amount of mineralized matrix detected by alizarin red was significantly higher for the Lyosecretome scaffolds. The amount of osteocalcin, a specific bone matrix protein, was significantly higher at all the times considered (14 and 28 days) for the Lyosecretome scaffolds. Confocal microscopy further confirmed such results, demonstrating improved osteogenesis with the Lyosecretome scaffolds after 14 and 28 days. Overall, these results prove the role of MSC secretome, coprinted in PCL/alginate scaffolds, in inducing bone regeneration; sterile scaffolds containing MSC secretome are now available for in vivo pre-clinical tests of bone regeneration

    Time-resolved CARS measurements of vibrational decoherence of I₂ isolated in matrix Ar

    No full text
    Time-resolved coherent anti-Stokes Raman scattering is applied to prepare and interrogate vibrational coherences on the ground electronic surface of molecular iodine isolated in Ar matrices. The coherence decay time shows a linear dependence on vibrational quantum numbers, for v = 3–15. The temperature dependence of decoherence rates is negligible for v < 7, in the experimental range T = 18–32 K. For a v = 13, 14 superposition, the temperature dependence indicates dephasing by a 66 cm–¹ pseudo-local phonon, just outside the Debye edge of the solid. The accuracy of the data is limited due to two-photon induced dissociation of the molecule, which process is characterized using polarized fields. The T → 0 limit of dephasing is discussed

    Canine mesenchymal cell lyosecretome production and safety evaluation after allogenic intraarticular injection in osteoarthritic dogs

    Get PDF
    In recent years, mesenchymal stromal cells (MSCs) have shown promise as a therapy in treating musculoskeletal diseases, and it is currently believed that their therapeutic effect is mainly related to the release of proteins and extracellular vesicles (EVs), known as secretome. In this work, three batches of canine MSC-secretome were prepared by standardized processes according to the current standard ISO9001 and formulated as a freeze-dried powder named Lyosecretome. The final products were char-acterized in protein and lipid content, EV size distribution and tested to ensure the microbiological safety required for intraarticular injection. Lyosecretome induced the proliferation of adipose tissue-derived canine MSCs, tenocytes, and chondrocytes in a dose-dependent manner and showed anti-elastase activ-ity, reaching 85% of inhibitory activity at a 20 mg/mL concentration. Finally, to evaluate the safety of the preparation, three patients affected by bilateral knee or elbow osteoarthritis were treated with two intraarticular injections (t = 0 and t = 40 days) of the allogeneic Lyosecretome (20 mg corresponding 2 × 106 cell equivalents) resuspended in hyaluronic acid in one joint and placebo (mannitol resuspended in hyalu-ronic acid) in the other joint. To establish the safety of the treatment, the follow-up included a questionnaire addressed to the owner and orthopaedic examinations to assess lameness grade, pain score, func-tional disability score and range of motion up to day 80 post-treatment. Overall, the collected data suggest that intra-articular injection of allogeneic Lyosecretome is safe and does not induce a clinically significant local or systemic adverse response

    Equine mesenchymal stem/stromal cells freeze-dried secretome (Lyosecretome) for the treatment of musculoskeletal diseases: Production process validation and batch release test for clinical use

    Get PDF
    In the last decades, it has been demonstrated that the regenerative therapeutic efficacy of mesenchymal stromal cells is primarily due to the secretion of soluble factors and extracellular vesicles, collectively known as secretome. In this context, our work described the preparation and characterization of a freeze-dried secretome (Lyosecretome) from adipose tissue-derived mesenchy-mal stromal cells for the therapy of equine musculoskeletal disorder. An intraarticular injectable pharmaceutical powder has been formulated, and the technological process has been validated in an authorized facility for veterinary clinical-use medicinal production. Critical parameters for quality control and batch release have been identified regarding (i) physicochemical properties; (ii) extracellular vesicle morphology, size distribution, and surface biomarker; (iii) protein and lipid content; (iv) requirements for injectable pharmaceutical dosage forms such as sterility, bacterial endotoxin, and Mycoplasma; and (v) in vitro potency tests, as anti-elastase activity and proliferative activity on musculoskeletal cell lines (tenocytes and chondrocytes) and mesenchymal stromal cells. Finally, proteins putatively responsible for the biological effects have been identified by Lyosecretome pro-teomic investigation: IL10RA, MXRA5, RARRES2, and ANXA1 modulate the inflammatory process RARRES2, NOD1, SERPINE1, and SERPINB9 with antibacterial activity. The work provides a proof-of-concept for the manufacturing of clinical-grade equine freeze-dried secretome, and prototypes are now available for safety and efficacy clinical trials in the treatment of equine musculoskeletal diseases

    Factors affecting the implementation of a complex health intervention to improve insulin management in primary care : a SWOT analysis

    Get PDF
    BACKGROUND : In South Africa, initiating and managing insulin in primary care for people living with type 2 diabetes (PLWD) is a major challenge. To address these challenges, a multidisciplinary team from the University of Pretoria (South Africa) developed the Tshwane Insulin project (TIP) intervention. AIM : To determine internal and external factors, either facilitators or barriers, that could influence the implementation of the TIP intervention and propose strategies to ensure sustainability. SETTING : Tshwane District, Gauteng province, South Africa. METHODS : We used the SWOT framework to qualitatively analyse the strengths, weaknesses, opportunities, and threats influencing the implementation of the TIP intervention. Four field researchers and three managers from the TIP team participated in an online group discussion. We also conducted semi-structured interviews with healthcare providers (HCPs) (seven nurses, five doctors) and patients with type 2 diabetes (n = 13). RESULTS : Regardless of the identified weaknesses, the TIP intervention was accepted by PLWD and HCPs. Participants identified strengths including app-enabled insulin initiation and titration, pro-active patient follow-up, patient empowerment and provision of glucose monitoring devices. Participants viewed insulin resistance and the attitudes of HCPs as potential threats. Participants suggested that weaknesses and threats could be mitigated by translating education material into local languages and using the lived experiences of insulintreated patients to address insulin resistance. The procurement of glucose monitoring devices by national authorities would promote the sustainability of the intervention. CONCLUSION : Our findings may help decision-makers and health researchers to improve insulin management for PLWD in resource-constrained settings by using telehealth interventions.The Lilly Global Health Partnershiphttp://www.phcfm.orghj2022Human NutritionInternal MedicineNursing ScienceSchool of Health Systems and Public Health (SHSPH

    Sustainable Land Use: Methodology and Application

    Get PDF
    The chapters in this volume are edited versions of papers presented at the NATO Ad- vanced Research Workshop on Environmental Change Adaptation and Security held in Budapest, Hungary, from October 16 - 18, 1997. As is evident in this volume, the papers ranged from descriptions of environmental and health issues in Russia and Eastern Europe to models of sustainable land use. This diversity of perspectives on environ- ment and security is indicative of both the breadth of this new area of research as well as the varied background of the researchers involved. The discussions at the NATO workshop were remarkably animated and exciting, not surprising given the interest in the topic. I think this vitality is reflected in the papers in this volume as well. The main purpose of the NATO ARW is to foster research links among researchers from NATO countries and Central and Eastern European States, Russia, and the Newly Independent States. In editing this volume, a decision was made to keep to the spirit of this purpose and-if at all possible-include all papers prepared for the workshop. This required extensive editing and rewriting of some of the papers (and consequent delays in production). A determination was made early in the process by the workshop steering committee that the value of publishing the entire collection of articles out- weighed the advantages of accepting only a limited number

    Nachweis von normalem Arsen in den Organen mittels der biologischen Methode

    No full text
    corecore