1,379 research outputs found

    3-dimensional Gravity from the Turaev-Viro Invariant

    Full text link
    We study the qq-deformed su(2) spin network as a 3-dimensional quantum gravity model. We show that in the semiclassical continuum limit the Turaev-Viro invariant obtained recently defines naturally regularized path-integral aˋ\grave{\rm a} la Ponzano-Regge, In which a contribution from the cosmological term is effectively included. The regularization dependent cosmological constant is found to be 4π2k2+O(k−4){4\pi^2\over k^2} +O(k^{-4}), where q2k=1q^{2k}=1. We also discuss the relation to the Euclidean Chern-Simons-Witten gravity in 3-dimension.Comment: 11page

    Reaction Pathways Based on the Gradient of the Mean First-Passage Time

    Full text link
    Finding representative reaction pathways is necessary for understanding mechanisms of molecular processes, but is considered to be extremely challenging. We propose a new method to construct reaction paths based on mean first-passage times. This approach incorporates information of all possible reaction events as well as the effect of temperature. The method is applied to exemplary reactions in a continuous and in a discrete setting. The suggested approach holds great promise for large reaction networks that are completely characterized by the method through a pathway graph.Comment: v2; 4 pages including 5 figure

    Induction chemotherapy in locally advanced squamous cell carcinoma of the head and neck: role, controversy, and future directions.

    Get PDF
    BackgroundThe value of induction chemotherapy (ICT) remains under investigation despite decades of research. New advancements in the field, specifically regarding the induction regimen of choice, have reignited interest in this approach for patients with locally advanced squamous cell carcinoma of the head and neck (LA SCCHN). Sufficient evidence has accumulated regarding the benefits and superiority of TPF (docetaxel, cisplatin, and fluorouracil) over the chemotherapy doublet cisplatin and fluorouracil. We therefore sought to collate and interpret the available data and further discuss the considerations for delivering ICT safely and optimally selecting suitable post-ICT regimens.DesignWe nonsystematically reviewed published phase III clinical trials on TPF ICT in a variety of LA SCCHN patient populations conducted between 1990 and 2017.ResultsTPF may confer survival and organ preservation benefits in a subgroup of patients with functionally inoperable or poor-prognosis LA SCCHN. Additionally, patients with operable disease or good prognosis (who are not candidates for organ preservation) may benefit from TPF induction in terms of reducing local and distant failure rates and facilitating treatment deintensification in selected populations. The safe administration of TPF requires treatment by a multidisciplinary team at an experienced institution. The management of adverse events associated with TPF and post-ICT radiotherapy-based treatment is crucial. Finally, post-ICT chemotherapy alternatives to cisplatin concurrent with radiotherapy (i.e. cetuximab or carboplatin plus radiotherapy) appear promising and must be investigated further.ConclusionsTPF is an evidence-based ICT regimen of choice in LA SCCHN and confers benefits in suitable patients when it is administered safely by an experienced multidisciplinary team and paired with the optimal post-ICT regimen, for which, however, no consensus currently exists

    The Screen representation of spin networks. Images of 6j symbols and semiclassical features

    Full text link
    This article presents and discusses in detail the results of extensive exact calculations of the most basic ingredients of spin networks, the Racah coefficients (or Wigner 6j symbols), exhibiting their salient features when considered as a function of two variables - a natural choice due to their origin as elements of a square orthogonal matrix - and illustrated by use of a projection on a square "screen" introduced recently. On these screens, shown are images which provide a systematic classification of features previously introduced to represent the caustic and ridge curves (which delimit the boundaries between oscillatory and evanescent behaviour according to the asymptotic analysis of semiclassical approaches). Particular relevance is given to the surprising role of the intriguing symmetries discovered long ago by Regge and recently revisited; from their use, together with other newly discovered properties and in conjunction with the traditional combinatorial ones, a picture emerges of the amplitudes and phases of these discrete wavefunctions, of interest in wide areas as building blocks of basic and applied quantum mechanics.Comment: 16 pages, 13 figures, presented at ICCSA 2013 13th International Conference on Computational Science and Applicatio

    Exact and asymptotic computations of elementary spin networks: classification of the quantum-classical boundaries

    Full text link
    Increasing interest is being dedicated in the last few years to the issues of exact computations and asymptotics of spin networks. The large-entries regimes (semiclassical limits) occur in many areas of physics and chemistry, and in particular in discretization algorithms of applied quantum mechanics. Here we extend recent work on the basic building block of spin networks, namely the Wigner 6j symbol or Racah coefficient, enlightening the insight gained by exploiting its self-dual properties and studying it as a function of two (discrete) variables. This arises from its original definition as an (orthogonal) angular momentum recoupling matrix. Progress also derives from recognizing its role in the foundation of the modern theory of classical orthogonal polynomials, as extended to include discrete variables. Features of the imaging of various regimes of these orthonormal matrices are made explicit by computational advances -based on traditional and new recurrence relations- which allow an interpretation of the observed behaviors in terms of an underlying Hamiltonian formulation as well. This paper provides a contribution to the understanding of the transition between two extreme modes of the 6j, corresponding to the nearly classical and the fully quantum regimes, by studying the boundary lines (caustics) in the plane of the two matrix labels. This analysis marks the evolution of the turning points of relevance for the semiclassical regimes and puts on stage an unexpected key role of the Regge symmetries of the 6j.Comment: 15 pages, 11 figures. Talk presented at ICCSA 2012 (12th International Conference on Computational Science and Applications, Salvador de Bahia (Brazil) June 18-21, 2012

    Topology and energy transport in networks of interacting photosynthetic complexes

    Get PDF
    We address the role of topology in the energy transport process that occurs in networks of photosynthetic complexes. We take inspiration from light harvesting networks present in purple bacteria and simulate an incoherent dissipative energy transport process on more general and abstract networks, considering both regular structures (Cayley trees and hyperbranched fractals) and randomly-generated ones. We focus on the the two primary light harvesting complexes of purple bacteria, i.e., the LH1 and LH2, and we use network-theoretical centrality measures in order to select different LH1 arrangements. We show that different choices cause significant differences in the transport efficiencies, and that for regular networks centrality measures allow to identify arrangements that ensure transport efficiencies which are better than those obtained with a random disposition of the complexes. The optimal arrangements strongly depend on the dissipative nature of the dynamics and on the topological properties of the networks considered, and depending on the latter they are achieved by using global vs. local centrality measures. For randomly-generated networks a random arrangement of the complexes already provides efficient transport, and this suggests the process is strong with respect to limited amount of control in the structure design and to the disorder inherent in the construction of randomly-assembled structures. Finally, we compare the networks considered with the real biological networks and find that the latter have in general better performances, due to their higher connectivity, but the former with optimal arrangements can mimic the real networks' behaviour for a specific range of transport parameters. These results show that the use of network-theoretical concepts can be crucial for the characterization and design of efficient artificial energy transport networks.Comment: 14 pages, 16 figures, revised versio

    Non-uniqueness of the Dirac theory in a curved spacetime

    Full text link
    We summarize a recent work on the subject title. The Dirac equation in a curved spacetime depends on a field of coefficients (essentially the Dirac matrices), for which a continuum of different choices are possible. We study the conditions under which a change of the coefficient fields leads to an equivalent Hamiltonian operator H, or to an equivalent energy operator E. In this paper, we focus on the standard version of the gravitational Dirac equation, but the non-uniqueness applies also to our alternative versions. We find that the changes which lead to an equivalent operator H, or respectively to an equivalent operator E, are determined by initial data, or respectively have to make some point-dependent antihermitian matrix vanish. Thus, the vast majority of the possible coefficient changes lead neither to an equivalent operator H, nor to an equivalent operator E, whence a lack of uniqueness. We show that even the Dirac energy spectrum is not unique.Comment: 13 pages (standard 12pt article format). Text of a talk given at the 1st Mediterranean Conference on Classical and Quantum Gravity, Kolymbari (Greece), Sept. 14-18, 200

    Going beyond Clustering in MD Trajectory Analysis: An Application to Villin Headpiece Folding

    Get PDF
    Recent advances in computing technology have enabled microsecond long all-atom molecular dynamics (MD) simulations of biological systems. Methods that can distill the salient features of such large trajectories are now urgently needed. Conventional clustering methods used to analyze MD trajectories suffer from various setbacks, namely (i) they are not data driven, (ii) they are unstable to noise and changes in cut-off parameters such as cluster radius and cluster number, and (iii) they do not reduce the dimensionality of the trajectories, and hence are unsuitable for finding collective coordinates. We advocate the application of principal component analysis (PCA) and a non-metric multidimensional scaling (nMDS) method to reduce MD trajectories and overcome the drawbacks of clustering. To illustrate the superiority of nMDS over other methods in reducing data and reproducing salient features, we analyze three complete villin headpiece folding trajectories. Our analysis suggests that the folding process of the villin headpiece is structurally heterogeneous
    • …
    corecore