50 research outputs found

    Closed-cycle, low-vibration 4 K cryostat for ion traps and other applications

    Get PDF
    In-vacuo cryogenic environments are ideal for applications requiring both low temperatures and extremely low particle densities. This enables reaching long storage and coherence times for example in ion traps, essential requirements for experiments with highly charged ions, quantum computation, and optical clocks. We have developed a novel cryostat continuously refrigerated with a pulse-tube cryocooler and providing the lowest vibration level reported for such a closed-cycle system with 1 W cooling power for a <5 K experiment. A decoupling system suppresses vibrations from the cryocooler by three orders of magnitude down to a level of 10 nm peak amplitudes in the horizontal plane. Heat loads of about 40 W (at 45 K) and 1 W (at 4 K) are transferred from an experimental chamber, mounted on an optical table, to the cryocooler through a vacuum-insulated massive 120 kg inertial copper pendulum. The 1.4 m long pendulum allows installation of the cryocooler in a separate, acoustically isolated machine room. In the laser laboratory, we measured the residual vibrations using an interferometric setup. The positioning of the 4 K elements is reproduced to better than a few micrometer after a full thermal cycle to room temperature. Extreme high vacuum on the 101510^{-15} mbar level is achieved. In collaboration with the Max-Planck-Intitut f\"ur Kernphysik (MPIK), such a setup is now in operation at the Physikalisch-Technische Bundesanstalt (PTB) for a next-generation optical clock experiment using highly charged ions

    Investigation into mercury bound to biothiols: structural identification using ESI–ion-trap MS and introduction of a method for their HPLC separation with simultaneous detection by ICP-MS and ESI-MS

    Get PDF
    Mercury in plants or animal tissue is supposed to occur in the form of complexes formed with biologically relevant thiols (biothiols), rather than as free cation. We describe a technique for the separation and molecular identification of mercury and methylmercury complexes derived from their reactions with cysteine (Cys) and glutathione (GS): Hg(Cys)2, Hg(GS)2, MeHgCys, MeHgGS. Complexes were characterised by electrospray mass spectrometry (MS) equipped with an ion trap and the fragmentation pattern of MeHgCys was explained by using MP2 and B3LYP calculations, showing the importance of mercury–amine interactions in the gas phase. Chromatographic baseline separation was performed within 10 min with formic acid as the mobile phase on a reversed-phase column. Detection was done by online simultaneous coupling of ES-MS and inductively coupled plasma MS. When the mercury complexes were spiked in real samples (plant extracts), no perturbation of the separation and detection conditions was observed, suggesting that this method is capable of detecting mercury biothiol complexes in plants

    Arsenite efflux is not enhanced in the arsenate-tolerant phenotype of Holcus lanatus

    Get PDF
    P>Arsenate tolerance in Holcus lanatus is achieved mainly through suppressed arsenate uptake. We recently showed that plant roots can rapidly efflux arsenite to the external medium. Here, we tested whether arsenite efflux is a component of the adaptive arsenate tolerance in H. lanatus. Tolerant and nontolerant phenotypes were exposed to different arsenate concentrations with or without phosphate for 24 h, and arsenic (As) speciation was determined in nutrient solutions, roots and xylem sap. At the same arsenate exposure concentration, the nontolerant phenotype took up more arsenate and effluxed more arsenite than the tolerant phenotype. However, arsenite efflux was proportional to arsenate uptake and was not enhanced in the tolerant phenotype. Within 2-24 h, most (80-100%) of the arsenate taken up was effluxed to the medium as arsenite. About 86-95% of the As in the roots and majority of the As in xylem sap (c. 66%) was present as arsenite, and there were no significant differences between phenotypes. Arsenite efflux is not adaptively enhanced in the tolerant phenotype H. lanatus, but it could be a basal tolerance mechanism to greatly decrease cellular As burden in both phenotypes. Tolerant and nontolerant phenotypes had a similar capacity to reduce arsenate in roots. New Phytologist (2009) 183: 340-348doi: 10.1111/j.1469-8137.2009.02841.x

    Analyse der Milch

    No full text

    Ueber Milchzucker und Laktose

    No full text

    Towards precision measurements on highly charged ions using a high harmonic generation frequency comb

    No full text
    Highly charged ions (HCI) offer many advantages over neutral and singly charged ions for probing fundamental physics., Recently they have been proposed as candidates for novel frequency standards. The project presented here aims at studying HCI with high precision in the extreme ultraviolet (XUV) region, where many of their transitions are located. To this end, an XUV light source is being developed, using a stabilized frequency comb to generate high-order harmonics inside the focus of an enhancement cavity. This optical resonator resides in an ultra-high vacuum (UHV) chamber and is designed to have a very tight focus. The generated XUV light will be guided to a cryogenic linear Paul trap, where trapped HCI are sympathetically cooled by Be+ ions. Individual comb lines can then be used to drive narrow transitions in HCI, enabling XUV spectroscopy with unprecedented accuracy

    Deceleration, precooling, and multi-pass stopping of highly charged ions in Be+ Coulomb crystals

    Get PDF
    Preparing highly charged ions (HCIs) in a cold and strongly localized state is of particular interest for frequency metrology and tests of possible spatial and temporal variations of the fine structure constant. Our versatile preparation technique is based on the generic modular combination of a pulsed ion source with a cryogenic linear Paul trap. Both instruments are connected by a compact beamline with deceleration and precooling properties. We present its design and commissioning experiments regarding these two functionalities. A pulsed buncher tube allows for the deceleration and longitudinal phase-space compression of the ion pulses. External injection of slow HCIs, specifically Ar13+, into the linear Paul trap and their subsequent retrapping in the absence of sympathetic cooling is demonstrated. The latter proved to be a necessary prerequisite for the multi-pass stopping of HCIs in continuously laser-cooled Be+ Coulomb crystals. © 2015 AIP Publishing LLC

    Coulomb crystals in a cryogenic Paul trap for sympathetic cooling of molecular ions and highly charged ions

    No full text
    Electron beam ion traps used for spectroscopy of highly charged ions (HCI) produce a deep trapping potential leading to high temperatures of the stored ions, and thus limiting the achievable spectral resolution. A novel device at the Max-Planck-Institut für Kernphysik, the Cryogenic linear Paul Trap Experiment (CryPTEx), attached to an electron beam ion trap, provides a new experimental platform to overcome these limitations. The trap assembly operates at a temperature of 4 K and offers optical access for quantum manipulation and imaging of the trapped ions. Since forbidden optical transitions in HCI do not support direct laser cooling, sympathetic cooling with Coulomb crystals of singly charged ions such as Be+ or Mg+ will be applied in order to reach the natural linewidth of optical forbidden transitions in HCI of interest. With the added advantage of long ion trapping times resulting from residual gas pressures of H2 at 4 K below 10−15 mbar, CryPTEx has been commissioned in collaboration with the Ion Trap Group in Århus using rovibrationally cooled MgH+ ions. Strong suppression of the black body radiation at the trap center, ion storage times of about 28 hours, and largely enhanced population of the rovibrational ground state were achieved

    Coulomb crystallization of highly charged ions

    Get PDF
    Sympathetic Coulomb crystallization of highly charged ions, retrapped in a cryogenic radiofrequency trap, is demonstrated by an over seven orders-of-magnitude decrease in motional temperature
    corecore