23 research outputs found

    Total Aortic Arch Replacement: Superior Ventriculo-Arterial Coupling with Decellularized Allografts Compared with Conventional Prostheses.

    Get PDF
    BACKGROUND: To date, no experimental or clinical study provides detailed analysis of vascular impedance changes after total aortic arch replacement. This study investigated ventriculoarterial coupling and vascular impedance after replacement of the aortic arch with conventional prostheses vs. decellularized allografts. METHODS: After preparing decellularized aortic arch allografts, their mechanical, histological and biochemical properties were evaluated and compared to native aortic arches and conventional prostheses in vitro. In open-chest dogs, total aortic arch replacement was performed with conventional prostheses and compared to decellularized allografts (n = 5/group). Aortic flow and pressure were recorded continuously, left ventricular pressure-volume relations were measured by using a pressure-conductance catheter. From the hemodynamic variables end-systolic elastance (Ees), arterial elastance (Ea) and ventriculoarterial coupling were calculated. Characteristic impedance (Z) was assessed by Fourier analysis. RESULTS: While Ees did not differ between the groups and over time (4.1+/-1.19 vs. 4.58+/-1.39 mmHg/mL and 3.21+/-0.97 vs. 3.96+/-1.16 mmHg/mL), Ea showed a higher increase in the prosthesis group (4.01+/-0.67 vs. 6.18+/-0.20 mmHg/mL, P<0.05) in comparison to decellularized allografts (5.03+/-0.35 vs. 5.99+/-1.09 mmHg/mL). This led to impaired ventriculoarterial coupling in the prosthesis group, while it remained unchanged in the allograft group (62.5+/-50.9 vs. 3.9+/-23.4%). Z showed a strong increasing tendency in the prosthesis group and it was markedly higher after replacement when compared to decellularized allografts (44.6+/-8.3dyn.sec.cm-5 vs. 32.4+/-2.0dyn.sec.cm-5, P<0.05). CONCLUSIONS: Total aortic arch replacement leads to contractility-afterload mismatch by means of increased impedance and invert ventriculoarterial coupling ratio after implantation of conventional prostheses. Implantation of decellularized allografts preserves vascular impedance thereby improving ventriculoarterial mechanoenergetics after aortic arch replacement

    In vitro

    No full text

    An approach for patient specific modeling of the aortic valve leaflets

    No full text
    Planning or aortic valve reconstruction requires a model of the patient specific aortic root geometry. Ome imaging modality to get information about this individual geometry is transesophageal ultrasound (TEE). We identified geometric parameters which are extractable from the ultrasound images and which define basic functional properties of the valve. Furthermore, we present an approach to create a patient specific surface model of the aortic valve leaflets based on these parameters. Our results indicate that it is possible to model a patient specific aortic valve leaflet based on four points which can be extracted from TEE imagesPeer reviewe

    Empirische Untersuchung aktualgenetischer, psychologischer Aspekte von Komponenten des Ernaehrungsverhaltens

    No full text
    Freie Universitaet Berlin, Zentralinstitut 6 - T2G 208 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI) reveals altered blood flow patterns in the ascending aorta of patients with valve-sparing aortic root replacement

    No full text
    Objective The aim of this study was to compare aortic flow patterns in patients after David valve-sparing aortic root replacement with physiologically shaped sinus prostheses or conventional tube grafts in healthy volunteers. Methods Twelve patients with sinus prostheses (55 ± 15 years), 6 patients with tube grafts (58 ± 12 years), 12 age-matched, healthy volunteers (55 ± 6 years), and 6 young, healthy volunteers (25 ± 3 years) were examined with time-resolved 3-dimensional magnetic resonance phase contrast imaging (4D Flow MRI). Primary and secondary helical, as well as vortical flow patterns, were evaluated. Aortic arch anatomy as a flow influencing factor was determined. Results Compared with volunteers, both sinus prostheses and tube grafts developed more than 4 times as many secondary flow patterns in the ascending aorta (sinus prostheses n = 1.6 ± 0.8; tube grafts n = 1.3 ± 0.6; age-matched, healthy volunteers n = 0.3 ± 0.5; young, healthy volunteers n = 0; P ≤ .012) associated with a kinking of the prosthesis itself or at its distal anastomosis. As opposed to round aortic arches in volunteers (n = 16/18), cubic or gothic-shaped arches predominated in patients (n = 16/18, P < .001). In all but 3 volunteers, 2 counter-rotating helices were confirmed in the ascending aorta and were defined as a primary flow pattern. This primary flow pattern did not develop in patients who underwent valve-sparing aortic root replacement. Conclusions In patients after valve-sparing aortic root replacement, there was an increased number of secondary flow patterns in the ascending aorta. This seems to be related to surgically altered aortic geometry with kinking. Because flow alterations are known to affect wall shear stress, there seems to be an increased risk for vessel wall remodeling. Compared with previous 4D Flow MRI studies, primary flow patterns in the ascending aorta in healthy subjects were confirmed to be more complex. This underlines the importance of thorough examination of 4D Flow MRI data

    Molecular adsorption on oxide surfaces: Electronic structure and orientation of NO on NiO(100)/Ni(100) and on NiO(100) as determined from electron spectroscopies and ab initio cluster calculations

    No full text
    We have investigated the adsorption of NO on a thin NiO(100) film of several layers thickness grown on top of a Ni(100) surface in comparison with data of an in vacuo cleaved NiO(100) single crystal. The layer exhibits a high defect density. We demonstrate via application of several surface-sensitive electron-spectroscopic techniques [i.e., x-ray photoelectron spectroscopy (XPS), angle-resolved ultraviolet photoelectron spectroscopy (ARUPS), near-edge x-ray-absorption fine structure (NEXAFS), and high-resolution electron-energy-loss spectroscopy (HREELS)] that this layer has similar occupied (ARUPS) and unoccupied (NEXAFS) states as a bulk NiO(100) sample. In spite of its limited thickness, the band structure of the film exhibits dispersions perpendicular to the surface compatible with bulk NiO(100). It is shown that the electronic structure of the oxygen sublattice can be described in a band-structure picture while for the Ni sublattice electron localization effects lead to a breakdown of the band-structure picture. NO on NiO desorbs at 220 K. This indicates weak chemisorption. The NO coverage is close to 0.2 relative to the number of Ni surface atoms as determined by XPS.HREELS reveals that there is only one species on the surface documented by the observation of only one bond-stretching frequency. NEXAFS data on the system and a comparison with previous data on the system NO/Ni(100) indicate that the molecular axis of adsorbed NO is tilted by an angle of approximately 45° relative to the surface normal. The N 1s XP spectra of the weakly chemisorbed species show giant satellites similar to the previously observed cases for weak chemisorption on metal surfaces. This is the first observation of an intense satellite structure for an adsorbate on an insulator surface, which shows that there must be sufficient screening channels even on an insulating surface. A theoretical assignment of the peaks is discussed. We compare the spectroscopic properties of the NO species on the thin-film oxide surface, which is likely to contain a certain number of defects, with NO adsorbed on a basically defect-free bulk oxide surface by thermal-desorption (TDS) and XP spectra. TDS and XP spectra of the bulk system are basically identical as compared with the oxide film, indicating that the majority of species adsorbed on the film is not adsorbed on defects but rather on regular NiO sites. Results of ab initio oxide cluster calculations are used to explain the bonding geometry of NO on regular NiO sites
    corecore