44 research outputs found

    Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm.

    Get PDF
    PublishedJournal ArticleResearch Support, N.I.H., ExtramuralResearch Support, Non-U.S. Gov'tThis is the final version of the article. Available from Public Library of Science via the DOI in this record.Leukocyte telomere length (LTL) is a complex genetic trait. It shortens with age and is associated with a host of aging-related disorders. Recent studies have observed that offspring of older fathers have longer LTLs. We explored the relation between paternal age and offspring's LTLs in 4 different cohorts. Moreover, we examined the potential cause of the paternal age on offspring's LTL by delineating telomere parameters in sperm donors. We measured LTL by Southern blots in Caucasian men and women (n=3365), aged 18-94 years, from the Offspring of the Framingham Heart Study (Framingham Offspring), the NHLBI Family Heart Study (NHLBI-Heart), the Longitudinal Study of Aging Danish Twins (Danish Twins), and the UK Adult Twin Registry (UK Twins). Using Southern blots, Q-FISH, and flow-FISH, we also measured telomere parameters in sperm from 46 young (50 years) donors. Paternal age had an independent effect, expressed by a longer LTL in males of the Framingham Offspring and Danish Twins, males and females of the NHLBI-Heart, and females of UK Twins. For every additional year of paternal age, LTL in offspring increased at a magnitude ranging from half to more than twice of the annual attrition in LTL with age. Moreover, sperm telomere length analyses were compatible with the emergence in older men of a subset of sperm with elongated telomeres. Paternal age exerts a considerable effect on the offspring's LTL, a phenomenon which might relate to telomere elongation in sperm from older men. The implications of this effect deserve detailed study.Supported by NIH grants R01-AG021593, R01-AG020132, and P01-AG0876. Support was also provided by NIH contract NOHC25195, the NHLBI cooperative agreement grants U01 HL 67893, U01 HL67894, U01 HL67895, U01 HL67896, U01 HL67897, U01 HL67898, U01 HL67899, U01 HL67900, U01 HL67901, U01 HL67902, U01 HL56563, U01 HL56564, U01 HL56565, U01 HL56566, U01 HL56567, U01 HL56568, and U01 HL56569. Also funded in part by the Wellcome Trust grant (ref 074951)

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Prevention of hepatorenal toxicity with Sonchus asper in gentamicin treated rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Sonchus asper </it>possesses antioxidant capacity and is used in liver and kidney disorders. We have investigated the preventive effect of methanolic extract of <it>Sonchus asper </it>(SAME) on the gentamicin induced alterations in biochemical and morphological parameters in liver and kidneys of Sprague-Dawley male rat.</p> <p>Methods</p> <p>Acute oral toxicity studies were performed for selecting the therapeutic dose of SAME. 30 Sprague-Dawley male rats were equally divided into five groups with 06 animals in each. Group I received saline (0.5 ml/kg bw; 0.9% NaCl) while Group II administered with gentamicin 0.5 ml (100 mg/kg bw; i.p.) for ten days. Animals of Group III and Group IV received gentamicin and SAME 0.5 ml at a dose of 100 mg/kg bw and 200 mg/kg bw, respectively while Group V received only SAME at a dose of 200 mg/kg bw. Biochemical parameters including aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), γ-glutamyltransferase (γ-GT), total cholesterol, triglycerides, total protein, albumin, creatinine, blood urea nitrogen (BUN), total bilirubin and direct bilirubin were determined in serum collected from various groups. Urinary out puts were measured in each group and also assessed for the level of protein and glucose. Lipid peroxides (TBARS), glutathione (GSH), DNA injuries and activities of antioxidant enzymes; catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were determined in liver and renal samples. Histopathological studies of liver and kidneys were also carried out.</p> <p>Results</p> <p>On the basis of acute oral toxicity studies, 2000 mg/kg bw did not induce any toxicity in rats, 1/10<sup>th </sup>of the dose was selected for preventive treatment. Gentamicin increased the level of serum biomarkers; AST, ALT, ALP, LDH, γ-GT, total cholesterol, triglycerides, total protein, albumin, creatinine, BUN, total and direct bilirubin; as were the urinary level of protein, glucose, and urinary output. Lipid peroxidation (TBARS) and DNA injuries increased while GSH contents and activities of antioxidant enzymes; CAT, POD, SOD decreased with gentamicin in liver and kidney samples. SAME administration, dose dependently, prevented the alteration in biochemical parameters and were supported by low level of tubular and glomerular injuries induced with gentamicin.</p> <p>Conclusion</p> <p>These results suggested the preventive role of SAME for gentamicin induced toxicity that could be attributed by phytochemicals having antioxidant and free radical scavenging properties.</p

    Inhibition of polyphosphoinositide phosphodiesterase by aminoglycoside antibiotics

    Full text link
    The calcium-activated phosphodiesteratic hydrolysis of 32 P-labeled phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate in prelabeled nerve ending membranes is inhibited by the aminoglycosides neomycin and gentamicin, and to a lesser extent, by streptomycin. The inhibition is overcome by increasing concentrations of Ca 2+ , indicating that the aminoglycosides exert their effect by displacing Ca 2+ from lipid.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45401/1/11064_2004_Article_BF00965878.pd

    Renal mitochondrial glutamine metabolism during K+ depletion

    No full text

    Glutamine transport in submitochondrial particles

    No full text

    Effect of acute pH change on mitochondrial glutamine transport

    No full text
    corecore