6 research outputs found

    Nonsteroidal Anti-Inflammatory Drugs and Opioids in Postsurgical Dental Pain

    Get PDF
    Postsurgical dental pain is mainly driven by inflammation, particularly through the generation of prostaglandins via the cyclooxygenase system. Thus, it is no surprise that numerous randomized placebo-controlled trials studying acute pain following the surgical extraction of impacted third molars have demonstrated the remarkable efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, naproxen sodium, etodolac, diclofenac, and ketorolac in this prototypic condition of acute inflammatory pain. Combining an optimal dose of an NSAID with an appropriate dose of acetaminophen appears to further enhance analgesic efficacy and potentially reduce the need for opioids. In addition to being on average inferior to NSAIDs as analgesics in postsurgical dental pain, opioids produce a higher incidence of side effects in dental outpatients, including dizziness, drowsiness, psychomotor impairment, nausea/vomiting, and constipation. Unused opioids are also subject to misuse and diversion, and they may cause addiction. Despite these risks, some dental surgical outpatients may benefit from a 1- or 2-d course of opioids added to their NSAID regimen. NSAID use may carry significant risks in certain patient populations, in which a short course of an acetaminophen/opioid combination may provide a more favorable benefit versus risk ratio than an NSAID regimen. © International & American Associations for Dental Research 2020

    Nonsteroidal Anti-Inflammatory Drugs and Opioids in Postsurgical Dental Pain

    Get PDF
    Hersh EV, Moore PA, Grosser T, et al. Nonsteroidal Anti-Inflammatory Drugs and Opioids in Postsurgical Dental Pain. Journal of Dental Research. 2020;99(7):777-786.Postsurgical dental pain is mainly driven by inflammation, particularly through the generation of prostaglandins via the cyclooxygenase system. Thus, it is no surprise that numerous randomized placebo-controlled trials studying acute pain following the surgical extraction of impacted third molars have demonstrated the remarkable efficacy of nonsteroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen, naproxen sodium, etodolac, diclofenac, and ketorolac in this prototypic condition of acute inflammatory pain. Combining an optimal dose of an NSAID with an appropriate dose of acetaminophen appears to further enhance analgesic efficacy and potentially reduce the need for opioids. In addition to being on average inferior to NSAIDs as analgesics in postsurgical dental pain, opioids produce a higher incidence of side effects in dental outpatients, including dizziness, drowsiness, psychomotor impairment, nausea/vomiting, and constipation. Unused opioids are also subject to misuse and diversion, and they may cause addiction. Despite these risks, some dental surgical outpatients may benefit from a 1- or 2-d course of opioids added to their NSAID regimen. NSAID use may carry significant risks in certain patient populations, in which a short course of an acetaminophen/opioid combination may provide a more favorable benefit versus risk ratio than an NSAID regimen

    Local sustained delivery of bupivacaine HCl from a new castor oil-based nanoemulsion system

    No full text
    Bupivacaine HCl (1-butyl-2',6'-pipecoloxylidide hydrochloride), an amide local anesthetic compound, is a local anesthetic drug utilized for intraoperative local anesthesia, post-operative analgesia and in the treatment of chronic pain. However, its utility is limited by the relative short duration of analgesia after local administration (approximately 9 h after direct injection) and risk for side effects. This work is aimed to develop a nanoemulsion of bupivacaine HCl with sustained local anesthetics release kinetics for improved pain management, by exhibiting extended analgesic action and providing reduced peak levels in the circulation to minimize side effects. Herein, biodegradable oils were evaluated for use in nanoemulsions to enable sustained release kinetics of bupivacaine HCl. Only with castor oil, a clear and stable nanoemulsion was obtained without the occurrence of phase separation over a period of 3 months. High loading of bupivacaine HCl into the castor oil-based nanoemulsion system was achieved with about 98% entrapment efficiency and the resulting formulation showed high stability under stress conditions (accelerated stability test) regarding changes in visual appearance, drug content, and droplet size. We show herein that the in vitro release and in vivo pharmacokinetic profiles as well as pharmacodynamic outcome (pain relief test) after subcutaneous administration in rats correlate well and clearly demonstrate the prolonged release and extended duration of activity of our novel nanoformulation. In addition, the lower Cmax value achieved in the blood compartment suggests the possibility that the risk for systemic side effects is reduced. We conclude that castor oil-based nanomulsion represents an attractive pain treatment possibility to achieve prolonged local action of bupivacaine HCl
    corecore