3,688 research outputs found

    Multiple Andreev reflections in hybrid multiterminal junctions

    Full text link
    We investigate theoretically charge transport in hybrid multiterminal junctions with superconducting leads kept at different voltages. It is found that multiple Andreev reflections involving several superconducting leads give rise to rich subharmonic gap structures in the current-voltage characteristics. The structures are evidenced numerically in junctions in the incoherent regime.Comment: 5 pages, 3 figure

    Semiclassical theory of current correlations in chaotic dot-superconductor systems

    Full text link
    We present a semiclassical theory of current correlations in multiterminal chaotic dot-superconductor junctions, valid in the absence of the proximity effect in the dot. For a dominating coupling of the dot to the normal terminals and a nonperfect dot-superconductor interface, positive cross correlations are found between currents in the normal terminals. This demonstrates that positive cross correlations can be described within a semiclassical approach. We show that the semiclassical approach is equivalent to a quantum mechanical Green's function approach with suppressed proximity effect in the dot.Comment: 5 pages, 3 figure

    Chaotic dot-superconductor analog of the Hanbury Brown Twiss effect

    Full text link
    As an electrical analog of the optical Hanbury Brown Twiss effect, we study current cross-correlations in a chaotic quantum dot-superconductor junction. One superconducting and two normal reservoirs are connected via point contacts to a chaotic quantum dot. For a wide range of contact widths and transparencies, we find large positive current correlations. The positive correlations are generally enhanced by normal backscattering in the contacts. Moreover, for normal backscattering in the contacts, the positive correlations survive when suppressing the proximity effect in the dot with a weak magnetic field.Comment: 4 pages, 3 figure

    Quantized dynamics of a coherent capacitor

    Full text link
    A quantum coherent capacitor subject to large amplitude pulse cycles can be made to emit or reabsorb an electron in each half cycle. Quantized currents with pulse cycles in the GHz range have been demonstrated experimentally. We develop a non-linear dynamical scattering theory for arbitrary pulses to describe the properties of this very fast single electron source. Using our theory we analyze the accuracy of the current quantization and investigate the noise of such a source. Our results are important for future scientific and possible metrological applications of this source.Comment: 4 pages, 2 figure

    Orbital entanglement and violation of Bell inequalities in the presence of dephasing

    Full text link
    We discuss orbital entanglement in mesoscopic conductors, focusing on the effect of dephasing. The entanglement is detected via violation of a Bell Inequality formulated in terms of zero-frequency current correlations. Following closely the recent work by Samuelsson, Sukhorukov and Buttiker, we investigate how the dephasing affects the possibility to violate the Bell Inequality and how system parameters can be adjusted for optimal violation.Comment: 9 pages, 2 figures. To appear in a special issue on "Quantum Computation at the Atomic Scale" in Turkish Journal of Physic

    Quantum heat fluctuations of single particle sources

    Full text link
    Optimal single electron sources emit regular streams of particles, displaying no low frequency charge current noise. Due to the wavepacket nature of the emitted particles, the energy is however fluctuating, giving rise to heat current noise. We investigate theoretically this quantum source of heat noise for an emitter coupled to an electronic probe in the hot-electron regime. The distribution of temperature and potential fluctuations induced in the probe is shown to provide direct information on the single particle wavefunction properties and display strong non-classical features.Comment: 5 pages, 2 figure

    Full counting statistics for voltage and dephasing probes

    Full text link
    We present a stochastic path integral method to calculate the full counting statistics of conductors with energy conserving dephasing probes and dissipative voltage probes. The approach is explained for the experimentally important case of a Mach-Zehnder interferometer, but is easily generalized to more complicated setups. For all geometries where dephasing may be modeled by a single one-channel dephasing probe we prove that our method yields the same full counting statistics as phase averaging of the cumulant generating function.Comment: 4 pages, 2 figure

    Entanglement in Anderson Nanoclusters

    Full text link
    We investigate the two-particle spin entanglement in magnetic nanoclusters described by the periodic Anderson model. An entanglement phase diagram is obtained, providing a novel perspective on a central property of magnetic nanoclusters, namely the temperature dependent competition between local Kondo screening and nonlocal Ruderman-Kittel-Kasuya-Yoshida spin ordering. We find that multiparticle entangled states are present for finite magnetic field as well as in the mixed valence regime and away from half filling. Our results emphasize the role of charge fluctuations.Comment: 5 pages, 3 figure

    Quantum pump driven fermionic Mach-Zehnder interferometer

    Full text link
    We have investigated the characteristics of the currents in a pump-driven fermionic Mach-Zehnder interferometer. The system is implemented in a conductor in the quantum Hall regime, with the two interferometer arms enclosing an Aharonov-Bohm flux Φ\Phi. Two quantum point contacts with transparency modulated periodically in time drive the current and act as beam-splitters. The current has a flux dependent part I(Φ)I^{(\Phi)} as well as a flux independent part I(0)I^{(0)}. Both current parts show oscillations as a function of frequency on the two scales determined by the lengths of the interferometer arms. In the non-adiabatic, high frequency regime I(Φ)I^{(\Phi)} oscillates with a constant amplitude while the amplitude of the oscillations of I(0)I^{(0)} increases linearly with frequency. The flux independent part I(0)I^{(0)} is insensitive to temperature while the flux dependent part I(Φ)I^{(\Phi)} is exponentially suppressed with increasing temperature. We also find that for low amplitude, adiabatic pumping rectification effects are absent for semitransparent beam-splitters. Inelastic dephasing is introduced by coupling one of the interferometer arms to a voltage probe. For a long charge relaxation time of the voltage probe, giving a constant probe potential, I(Φ)I^{(\Phi)} and the part of I(0)I^{(0)} flowing in the arm connected to the probe are suppressed with increased coupling to the probe. For a short relaxation time, with the potential of the probe adjusting instantaneously to give zero time dependent current at the probe, only I(Φ)I^{(\Phi)} is suppressed by the coupling to the probe.Comment: 10 pages, 4 figure
    corecore