1,939 research outputs found

    Spontaneous violation of chiral symmetry in QCD vacuum is the origin of baryon masses and determines baryon magnetic moments and their other static properties

    Full text link
    A short review is presented of the spontaneous violation of chiral symmetry in QCD vacuum. It is demonstrated, that this phenomenon is the origin of baryon masses in QCD. The value of nucleon mass is calculated as well as the masses of hyperons and some baryonic resonances and expressed mainly through the values of quark condensates -- , q=u,d,s, ~q=u,d,s -- the vacuum expectation values (v.e.v.) of quark field. The concept of vacuum expectation values induced by external fields is introduced. It is demonstrated that such v.e.v. induced by static electromagnetic field results in quark condensate magnetic susceptibility, which plays the main role in determination of baryon magnetic moments. The magnetic moments of proton, neutron and hyperons are calculated. The results of calculation of baryon octet β\beta-decay constants are also presented.Comment: 13 pades, 5 figures. Dedicated to 85-birthday of acad. S.T.Belyaev. To be published in Phys.At.Nucl. Few references are correcte

    Chirality violating condensates in QCD and their connection with zero mode solutions of quark Dirac equations

    Full text link
    It is demonstrated, that chirality violating condensates in massless QCD arise entirely from zero mode solutions of Dirac equations in arbitrary gluon fields. The model is suggested, where the zero mode solutions are the ones for quarks, moving in the instanton field. Basing on this model were calculated the quark condensate magnetic susceptibilities of dimensions 3(χ)3(\chi) and 5 (κ\kappa and ξ\xi). The good considence of the values χ,κ\chi,\kappa and ξ\xi, obtained in this approach with ones, found from the hadronic spectrum ia a serious argument in favour, that instantons are the only source of chirality violating condensates in QCD. The temperature dependence of the quark condensate is discussed. It is shown that the phase transition, corresponding to the TT-dependence of the quark condensate α(T)\alpha(T) as an order parameter, is of the type of crossover.Comment: The talk presented of Gribov-80 Workshop, May 28-30, 2010, Trieste, 8 pages, minor change

    Numerical simulation evidence of spectrum rearrangement in impure graphene

    Full text link
    By means of numerical simulation we confirm that in graphene with point defects a quasigap opens in the vicinity of the resonance state with increasing impurity concentration. We prove that states inside this quasigap cannot longer be described by a wavevector and are strongly localized. We visualize states corresponding to the density of states maxima within the quasigap and show that they are yielded by impurity pair clusters

    The B_{s0} meson and the B_{s0}B K coupling from QCD sum rules

    Full text link
    We evaluate the mass of the Bs0B_{s0} scalar meson and the coupling constant in the Bs0BKB_{s0} B K vertex in the framework of QCD sum rules. We consider the Bs0B_{s0} as a tetraquark state to evaluate its mass. We get m_{B_s0}=(6.04\pm 0.08) \GeV, which is bigger than predictions supposing it as a bsˉb\bar{s} state or a BKˉB\bar{K} bound state with JP=0+J^{P}=0^+. To evaluate the gBs0BKg_{B_{s0}B K} coupling we use the three point correlation functions of the vertex, considering Bs0 B_{s0} as a normal bsˉb\bar{s} state. The obtained coupling constant is: g_{B_{s0} B K} =(16.3 \pm 3.2) \GeV. This number is in agreement with light-cone QCD sum rules calculation. We have also compared the decay width of the \BS\to BK process considering the \BS to be a bsˉb\bar{s} state and a BKBK molecular state. The width obtained for the BKBK molecular state is twice as big as the width obtained for the bsˉb\bar{s} state. Therefore, we conclude that with the knowledge of the mass and the decay width of the \BS meson, one can discriminate between the different theoretical proposals for its structure.Comment: revised version to appear in Phys. Rev.

    Implications of the Crystal Barrel data for meson-baryon symmetries

    Full text link
    Making use of numerous resonances discovered by the Crystal Barrel Collaboration we discuss some possible relations between the baryon and meson spectra of resonances composed of the light non-strange quarks. Our goal is to indicate new features that should be reproduced by the realistic dynamical models describing the hadron spectrum in the sector of light quarks.Comment: Completely modified version; to appear in Mod. Phys. Lett.

    Thermoelectricity in Nanowires: A Generic Model

    Full text link
    By employing a Boltzmann transport equation and using an energy and size dependent relaxation time (Ï„\tau) approximation (RTA), we evaluate self-consistently the thermoelectric figure-of-merit ZTZT of a quantum wire with rectangular cross-section. The inferred ZTZT shows abrupt enhancement in comparison to its counterparts in bulk systems. Still, the estimated ZTZT for the representative Bi2_2Te3_3 nanowires and its dependence on wire parameters deviate considerably from those predicted by the existing RTA models with a constant Ï„\tau. In addition, we address contribution of the higher energy subbands to the transport phenomena, the effect of chemical potential tuning on ZTZT, and correlation of ZTZT with quantum size effects (QSEs). The obtained results are of general validity for a wide class of systems and may prove useful in the ongoing development of the modern thermoelectric applications.Comment: 15 pages, 6 figures; Dedicated to the memory of Amirkhan Qezell

    Combination Rules, Charge Symmetry, and Hall Effect in Cuprates

    Full text link
    The rule relating the observed Hall coefficient to the spin and charge responses of the uniform doped Mott insulator is derived. It is essential to include the contribution of holon and spinon three-current correlations to the effective action of the gauge field. In the vicinity of the Mott insulating point the Hall coefficient is holon dominated and weakly temperature dependent. In the vicinity of a point of charge conjugation symmetry the holon contribution to the observed Hall coefficient is small: the Hall coefficient follows the temperature dependence of the diamagnetic susceptibility with a sign determined by the Fermi surface shape. NOTE: document prepared using REVTEX. (3 Figs, not included, available on request from: [email protected])Comment: 8 page

    Rho-meson form factors and QCD sum rules

    Full text link
    We present predictions for rho-meson form factors obtained from the analysis of QCD sum rules in next-to-leading order of perturbation theory. The radiative corrections turn out to be sizeable and should be taken into account in rigorous theoretical analysis.Comment: LaTeX file, 14 pages, 7 figure
    • …
    corecore