9,460 research outputs found

    Semi-Empirical Cepheid Period-Luminosity Relations in Sloan Magnitudes

    Full text link
    In this paper we derive semi-empirical Cepheid period-luminosity (P-L) relations in the Sloan ugriz magnitudes by combining the observed BVI mean magnitudes from the Large Magellanic Cloud Cepheids (LMC) and theoretical bolometric corrections. We also constructed empirical gr band P-L relations, using the publicly available Johnson-Sloan photometric transformations, to be compared with our semi-empirical P-L relations. These two sets of P-L relations are consistent with each other.Comment: 4 pages, 2 tables and 2 figures, ApJ accepte

    Principal Component Analysis of RR Lyrae light curves

    Full text link
    In this paper, we analyze the structure of RRab star light curves using Principal Component Analysis. We find this is a very efficient way to describe many aspects of RRab light curve structure: in many cases, a Principal Component fit with 9 parameters can describe a RRab light curve including bumps whereas a 17 parameter Fourier fit is needed. As a consequence we show statistically why the amplitude is also a good summary of the structure of a RR Lyrae light curve. We also use our analysis to derive an empirical relation relating absolute magnitude to light curve structure. In comparing this formula to those derived from exactly the same dataset but using Fourier parameters, we find that the Principal Component Analysis approach has disticnt advantages. These advantages are, firstly, that the errors on the coefficients in such formulae are smaller, and secondly, that the correlation between Principal Components is significantly smaller than the correlation between Fourier amplitudes. These two factors lead to reduced formal errors, in some cases estimated to be a factor of 2, on the eventual fitted value of the absolute magnitude. This technique will prove very useful in the analysis of data from existing large scale survey projects concerning variable stars.Comment: 8 pages, 10 figures, revised version, accepted for publication to MNRA

    Instantons and Supersymmetry

    Get PDF
    The role of instantons in describing non-perturbative aspects of globally supersymmetric gauge theories is reviewed. The cases of theories with N=1, N=2 and N=4 supersymmetry are discussed. Special attention is devoted to the intriguing relation between instanton solutions in field theory and branes in string theory

    Direct cadherin-activated cell signaling: a view from the plasma membrane

    Get PDF
    Classical cadherin adhesion molecules are key determinants of cell recognition and tissue morphogenesis, with diverse effects on cell behavior. Recent developments indicate that classical cadherins are adhesion-activated signaling receptors. In particular, early–immediate Rac signaling is emerging as a mechanism to coordinate cadherin–actin integration at the plasma membrane

    A perturbative re-analysis of N=4 supersymmetric Yang--Mills theory

    Full text link
    The finiteness properties of the N=4 supersymmetric Yang-Mills theory are reanalyzed both in the component formulation and using N=1 superfields, in order to discuss some subtleties that emerge in the computation of gauge dependent quantities. The one-loop corrections to various Green functions of elementary fields are calculated. In the component formulation it is shown that the choice of the Wess-Zumino gauge, that is standard in supersymmetric gauge theories, introduces ultraviolet divergences in the propagators at the one-loop level. Such divergences are exactly cancelled when the contributions of the fields that are put to zero in the Wess-Zumino gauge are taken into account. In the description in terms of N=1 superfields infrared divergences are found for every choice of gauge different from the supersymmetric generalization of the Fermi-Feynman gauge. Two-, three- and four-point functions of N=1 superfields are computed and some general features of the infrared problem are discussed. We also examine the effect of the introduction of mass terms for the (anti) chiral superfields in the theory, which break supersymmetry from N=4 to N=1. It is shown that in the mass deformed model no ultraviolet divergences appear in two-point functions. It argued that this result can be generalized to n-point functions, supporting the proposal of a possible of use of this modified model as a supersymmetry-preserving regularization scheme for N=1 theories.Comment: 41 pages, LaTeX2e, uses feynMP package to draw Feynman diagram

    Distributions of inherent structure energies during aging

    Full text link
    We perform extensive simulations of a binary mixture Lennard-Jones system subjected to a temperature jump in order to study the time evolution of fluctuations during aging. Analyzing data from 1500 different aging realizations, we calculate distributions of inherent structure energies for different aging times and contrast them with equilibrium. We find that the distributions initially become narrower and then widen as the system equilibrates. For deep quenches, fluctuations in the glassy system differ significantly from those observed in equilibrium. Simulation results are partially captured by theoretical predictions only when the final temperature is higher than the mode coupling temperature.Comment: 5 pages, 4 figure
    • …
    corecore